
ETIN80: Algorithms in Signal Processors
Echo Cancellation

Tommy Olofsson
ada09tol@student.lu.se

Gonzalo Blasco Soro
gonzalobsoro@gmail.com

March 4, 2014

1 Problem

Figure 1: An illustration of the problem of echo in full duplex audio communi-
cation systems.

The setup used consists of two sites, each with a microphone. One site has a
pair of headphones and one has a large speaker.

The sound produced by the first person will be captured by his microphone
and output by the speaker at the location of the second person. As the com-
municaiton is supposed to go both ways the second person will have another
microphone. This microphone will capture not only the words spoken by the
second person, but also the echo from the speaker. The signal from this micro-
phone will be output in the headphones of the first person. Due to the distance
between the speaker and the microphone the first person will not hear her words
as they are spoken, but with a short delay. This will disturb her and make it
surpirisingly hard for her to speak properly. The problem is illustrated in figure
1.

2 Solution

In the ideal case the first person would hear only the second person. Therefore,
the problem is to cancel the feedback of her voice in the signal from the second
site.

2

This is a common problem encountered in hands-free, mobile phone, and con-
ference phone systems, just to name a few examples. The common solution is
to use an adaptive LMS–filter to attenuate the echo. The reason for having an
adaptive filter is that even minute changes in the environment in which the sys-
tem operates will changes its impulse response and thus the echo. For a mobile
phone user, this might mean turning ones head or getting into a car.

2.1 Algorithm

Figure 2: The setup used in the project. For testing purposes white noise can
be substituted for the first microphone signal.

An overview of the system is shown in figure 2. The algorithm should strive
to remove the echo of signal x, output in the speaker, from signal d, input by
the microphone. To accomodate this the signal x is buffered. The length P
of the buffer is dictated by maximum delay of the echo one wishes to remove.
For each input sample the part which is computed to be a result of echo, y is
subtracted from the sample. This is done by approximating the environments
impulse response, H, by Ĥ. Practically, this is done by having a coefficient for
sample in the buffer. The cleaned up signal is

e(n) = d(n)− y(n)

where y(n) is computed as

3

y(n) = Ĥ(n) ·X(n)

To accomodate a changing environment impulse response, H, the approxima-
tion, Ĥ is refined as often as the hardware will allow. This means adjusting the
filter coefficients according to

Ĥ(n+ 1) = Ĥ(n)
µe(n)X(n)

X(n)ᵀX(n)

with a certain learning rate, denoted µ. To clarify, Ĥ is the filter coefficients
and X is the previous P samples of x(i). The adjustment is normalized.

In this way, a filter starting with filter coefficients set to zero will adapt to
the environment automatically. The learning rate was determined experimen-
tally.

For further details regarding the theory, we refer the reader to [1] and page 852–
in [2].

2.2 Problems and Discussion

2.2.1 Algorithm

In addition to the constant µ, an additional parameter had to be introduced.
When we switched from the plain algorithm to the normalized one we encoun-
tered an instability. This was corrected by empirically adding a small constant
to the sum of the squares of X in the denominator in the expression for updating
Ĥ.

Not quite a problem, but rather a challenge, was the tuning of the filter with
regard to length and the learning rate. The filter length was initially set to 200.
Using a sample rate of 8kHz this means the buffer covers 8000/200 = 0.025
seconds, or 25 ms. This should be able to cancel echos with a travel distance of
up to 340 ∗ 0.025 = 8.5 meter. The effectiveness of the filter should theretically
be greater at a higher frequency, but no clear difference could be perceived at
16kHz. The ability to perform the adaptation for each sample proved to be of
more value and might be part of the explanation, due to the fact that this could
not be done at higher sample rates.

2.2.2 Practical

One major source of problems turned out to be the software environment used
during development. The VisualDSP++ IDE from Analog Devices turned out
to be somewhat unstable.

The problems included:

4

Seemingly arbitrary halting of execution during debugging
This could often be temporarily resolved by disconnecting and reconnect-
ing the target in the software. No reason for the behaviour was found.

Random disconnects between DSP and PC
This could be temporarily resolved by physically disconnecting and recon-
necting the ICE to the PC. No reason for the behaviour was found.

Audio processing ISR not being executed
This behaviour disappeared when the algorithm was rewritten with no
obvious errors. This behaviour was most likely due to a silent crash.

2.3 Code

The amount of code developed was surprisingly small. Listing 1 contains the
full implementation.

Listing 1: main.c (Line–wrapped to fit document. Originally standard <80
columns.)
#include <proces so r_inc lude . h>
#include <s t d l i b . h>
#include <s i g n a l . h>
#include <s t d f i x . h>
#include <s t r i n g . h>
#include <f i l t e r . h>
#include <s td i o . h>
#include <l im i t s . h>
#include <math . h>

#include " framework . h"

#define DEBUG_STATS 0 /∗ Print s t a t s to
conso l e . ∗/

#define P (200) /∗ F i l t e r l e n g t h .
∗/

stat ic unsigned int opt_adapt = 1 ; /∗ Enable / d i s a b l e
adap ta t ion . ∗/

stat ic unsigned int op t_ f i l t e r = 1 ; /∗ Enable / d i s a b l e
f i l t e r . ∗/

stat ic unsigned int opt_mic = 0 ; /∗ Mic . or noice .
∗/

stat ic f loat h_hat [P] ; /∗ Approx . impulse
response o f room . ∗/

stat ic f loat xbuf f [P] ; /∗ Buf fer
con ta in ing pas t samples . ∗/

stat ic p t rd i f f_ t b i ; /∗ Index o f newest
sample in i b u f f . ∗/

5

stat ic const pm f loat mu = 0 . 2 5 0 ; /∗ LMS f i l t e r s t ep
s i z e . ∗/

#i f DEBUG_STATS
stat ic f loat avg_damp = 0 . 0 ; /∗ Average damping

f a c t o r . ∗/
#endif

stat ic void keyboard (int s i g)
{

unsigned int keys = dsp_get_keys () ;

i f (keys & 1) op t_ f i l t e r = 1 ;
i f (keys & 2) op t_ f i l t e r = 0 ;

i f (keys & 4) opt_mic = 1 ;
i f (keys & 8) opt_mic = 0 ;

}

#i f DEBUG_STATS
stat ic void t imer (int s i g)
{

stat ic unsigned int cnt ;
unsigned int mini = 0 ;
unsigned int maxi = 0 ;
f loat min = INT_MAX;
f loat max = INT_MIN;
unsigned int i ;

for (i = 0 ; i < P; i++) {
i f (h_hat [i] < min) {

min = h_hat [i] ;
mini = i ;

}
i f (h_hat [i] > max) {

max = h_hat [i] ;
maxi = i ;

}
}
p r i n t f (" f : ␣%d\nm: ␣%d\nad :%.4 f \n" , op t_ f i l t e r ,

opt_mic , avg_damp) ;
p r i n t f ("%u : ␣%f (%u) ␣%f (%u) \n" , cnt , min , mini , max

, maxi) ;
cnt++;

}
#endif

stat ic void process_lms (int s i g)
{

sample_t ∗mics = dsp_get_audio () ; /∗
Le f t i s x and r i g h t i s d . ∗/

6

sample_t ∗headphones = dsp_get_audio () ; /∗
Two channe ls . ∗/

sample_t ∗ speaker = dsp_get_audio_23 () ; /∗
Only the r i g h t one used . ∗/

unsigned int i ;

for (i = 0 ; i < DSP_BLOCK_SIZE; i++, b i =
c i r c i nd ex (bi , 1 , P)) {

f loat x ;
f loat d ;
f loat y = 0 . 0 ;
f loat e ;
p t r d i f f_ t t i ;
unsigned int k ;
f loat ftmp ;
int itmp ;
f loat sq = 0 . 0 ;

/∗ Input ∗/
x = mics [i] . l e f t / (f loat) INT_MAX;
d = mics [i] . r i g h t / (f loat) INT_MAX;

i f (! opt_mic)
x = .5 ∗ rand () / (f loat) INT_MAX

;

/∗ Compute ∗/
xbuf f [b i] = x ;
for (k = 0 , t i = bi ; k < P; k++, t i =

c i r c i nd ex (t i , −1, P))
y += h_hat [k] ∗ xbuf f [t i] ;

e = d − y ;

/∗ Adapt ∗/
for (k = 0 ; k < P; k++)

sq += xbuf f [k] ∗ xbuf f [k] ;
for (k = 0 , t i = bi ; k < P; k++, t i =

c i r c i nd ex (t i , −1, P))
h_hat [k] += (mu ∗ e ∗ xbuf f [t i])

/ (sq +.000025) ;

/∗ Output ∗/
speaker [i] . r i g h t = (int) (x ∗ INT_MAX) ;
speaker [i] . l e f t = 0 . 0 ;

itmp = (int) (((o p t_ f i l t e r) ? e : d) ∗
INT_MAX) ;

headphones [i] . l e f t = itmp ;
headphones [i] . r i g h t = itmp ;

}

7

}

void main ()
{

dsp_init () ;

i n t e r r up t (SIG_SP1 , process_lms) ;
i n t e r r up t (SIG_USR0, keyboard) ;

#i f DEBUG_STATS
in t e r r up t (SIG_TMZ, t imer) ;
t imer_set (98304000 , 98304000) ;
timer_on () ;

#endif
dsp_start () ;

for (; ;) i d l e () ;
}

References

[1] https://en.wikipedia.org/w/index.php?title=Least_mean_squares_
filter. [Online; last accessed 2014-03-01].

[2] Dimitris G. Manolakis John G. Proakis. Pearson Education, Inc., fourth
edition, 2007.

8

