
ETIN— Algorithms in Signal Processors
Development Environment

Tekn.Dr. Mikael Swartling

Lund Institute of Technology
Department of Electrical and Information Technology

January ,

Learning the Environment

I Visual DSP++ . Getting Started Guide
The guide shows to how to create and setup a project, and how to configure a

simulator or emulator session.

I Follow the exercises to get familiar with Visual DSP++ ..
I Important:

I A simulator session can be used without a DSP.
I An emulator session requires a DSP to be connected.
I Replace Blackfin ADSP-BF with SHARC ADSP-.
I Select ADSP- via HPUSB-ICE emulator platform.
I Copy the tutorial projects from the specified location to

your own folder if you intend to change or build it.

I The simulator platform does not provide audio or
keyboard interrupts.

I An active session is only required to run a program.

Software Framework

I The provided framework configures the DSP.
I Add the supplied source and header files to your project.

the main.c file can be used as a base example for your project

I Functions to control or query the framework:
I dsp_init – call once at the beginning to initialize the framework
I dsp_start – call to start the serial ports connected to the codecs
I dsp_stop – call to stop the serial ports connected to the codecs
I dsp_get_audio – returns a pointer to the current audio block to process
I dsp_get_keys – returns a bitmask of keys currently pressed

I Interrupts raised by the framework:
I SIG_SP – interrupt from the audio codec to process audio data
I SIG_USR – interrupt when a keyboard button is pressed
I SIG_TMZ – interrupt from the timer (not a framework interrupt, but useful)

Project Settings and Flash Loader

I The DSP does not have internal flash memory.
I To run from Visual DSP++, make an executable file.

I Project menu, select Project Options.
I Project settings, set Type to Executable file.

I To run stand-alone, make a loader file.
I Project menu, select Project Options.
I Project settings, set Type to Loader file.
I Project/Load settings, set Boot Type to SPI flash.

Project Settings and Flash Loader

I Ensure that the DSP is connected and a session is active.
I To write the application to flash memory:

I Tools menu, select Flash Programmer.
I Select the Flash tab, the OTP tab is not relevant.
I In the Driver tab:

I Select the supplied driver file in Driver file.
the supplied loader file is EzFlashDriver_Serial.dxe

I Press Load Driver.
I In the Programming tab:

I Select your compiled application in Data file.
the application is the .ldr file in your project’s Release or Debug folder

I Press Program to write your application to flash memory.

I Disconnect the session and power-cycle the DSP.

Configuring the Framework

I The header file has four values to configure to your needs.
I sampling rate in Hz
I block size samples
I mic or line input gain in dB
I speaker output attenuation in dB

#define DSP_SAMPLE_RATE
#define DSP_BLOCK_SIZE
#define DSP_INPUT_GAIN
#define DSP_OUTPUT_ATTENUATION

Block Buffers and the Framework

I The framework handles one block per interrupt.
I Input and output uses a cyclic set of three buffers:

I the input block is recorded
I the process block is processed by the application
I the output block is played

I Total delay is two blocks, plus additional codec delay.
I If no processing, the framework is pass-through.
I Halting the DSP does not halt the I/O processor!

I beware of acoustic feedback
I halting does not stop codecs from recording and playing

Block Buffers and the Framework

I The function dsp_get_audio returns a pointer to an array
of DSP_BLOCK_SIZE integer-valued stereo samples.

I A block is processed in-place.
the output is written to where the input is

I Sample values are -bit signed integers.
I sample values range from - to
I typecast the pointer to a fract *, or
I scale the sample values to a float

I Assuming that
sample_t *audio = dsp_get_audio();

then
audio[n].left

audio[n].right

is valid for n from to DSP_BLOCK_SIZE-.

Software Framework

#include "framework.h"

void process(int sig)

{

int n;

sample_t *audio = dsp_get_audio();

for(n=; n<DSP_BLOCK_SIZE; ++n) {

audio[n].left = audio[n].left << ; // half volume on left channel

audio[n].right = audio[n].right >> ; // double volume on right channel

}

}

void main()

{

dsp_init();

interrupt(SIG_SP, process);

dsp_start();

for(;;) {

idle();

}

}

