
ETIN— Algorithms in Signal Processors
Signal Processor Details

Tekn.Dr. Mikael Swartling

Lund Institute of Technology
Department of Electrical and Information Technology

January , 



Hardware

I Analog Devices ADSP- DSP.
I MHz maximum core
I MiB memory
I MiB non-volatile memory
I bit computational units
I integer, fixed point and floating point
I dual processing units

I Texas Instruments TLVAIC audio codec.
I bit stereo codec
I kHz to kHz sampling rate
I line and microphone input
I line and power output

I Four semi-independent audio codecs.
I  input channels.
I  output channels.









Integrated Development Environment

I Visual DSP++ ..
I workspace and project manager
I optimizing compiler for C, C++ and assembly
I simulator and in-circuit emulator
I automation scripting

I Extensive debugger.
I expressions
I register views
I graphs and images

I Run-time library.
I standard C library
I standard C++ library
I signal processing library
I file and console I/O



Integrated Development Environment



Standard Library

I Complete C and C++ run-time libraries.
I Library for DSP primitives.

I matrix and vector functions
I real and complex data
I filter functions
I Fourier transforms



Interrupts

I A signal from a hardware of software indicating an event
that needs immediate attention.

I Interrupt-driven design.
I cpu informs the program when something happens

I Poll-driven design.
I program asks the cpu if something has happened

I Interrupt-driven design is preferred.
I Poll-driven design is sometimes necessary.



Interrupts

I Program sequence during interrupts.
 program execution starts as normal in main()

, HP breaks and resumes main()

, LP breaks and resumes main()

I Interrupt sequencing is automatic.

idle/main
low pri.

medium pri.
high pri.

             

time



Interrupts

I Program sequence during interrupts.
, MP breaks and resumes main()

, HP breaks and resumes MP

, MP breaks and resumes main()

I Interrupt sequencing is automatic.

idle/main
low pri.

medium pri.
high pri.

             

time



Interrupts

I Program sequence during interrupts.
 HP breaks main()

 MP happens during HP, control is returned to MP

 MP resumes main()

I Interrupt sequencing is automatic.

idle/main
low pri.

medium pri.
high pri.

             

time



Inter-Frame Filtering States

I Implement y(n) =
K−1∑
k=0

x(n− k)h(k)

I Up to K − 1 previous samples has to be preserved.
I Any persistent state has to be preserved.

float const pm coeff[] = {...};

float state[] = {};

float filter(float x) {

int k;

float y = ;

for(k=; k<; ++k) { state[k] = state[k+]; }

state[] = x;

for(k=; k<; ++k) { y += state[k] * coeff[k]; }

return y;

}



Information Feedback

I Information feedback is a problem on a device without a
display.

I For run-time feedback:
I audible cues

I For debugging feedback:
I console I/O
I file I/O

I Use the in-circuit debugger for proper debugging.



Keypad Bouncing

I The keypad is a mechanical switch.
I Multiple triggers as the switch open or close.
I Handle bounces:

I delayed sampling using a timer
I ignore repetitive triggers

I Ignore bounces:
I assign single and discrete events per key



Data Types

I Almost ever data type is  bits.
long long and long double are  bit and emulated

I You have access to:
I integer types
I floating point types
I fractional types

I Fractional types are defined in stdfix.h

I type fract for a fractional value
I type accum for a fractional accumulator

I Fractional values represent values from −1 to 1− 2−31.



Program Memory for Constant Buffers

I The ADSP- has two memory banks.
I Code uses the PM bank.
I Data uses the DM bank by default.
I Put constant data in the PM bank.

float const pm coeff[] = {...}; // PM bank

float state[] = {}; // DM bank by default

I Example: filter coefficients that can be read in parallel
with sample data.



Circular and Bit-Reversed Addressing

I Implement y(n) =
K−1∑
k=0

x(n− k)h(k)

I Naive implementation performs a buffer shift.
I Circular addressing is automatic.

float const pm coeff[] = {...};

float state[] = {};

float filter(float x) {

int k;

float y = ;

for(k=; k<; ++k) { state[k] = state[k+]; }

state[] = x;

for(k=; k<; ++k) { y += state[k] * coeff[k]; }

return y;

}



Circular and Bit-Reversed Addressing

I Implement y(n) =
K−1∑
k=0

x(n− k)h(k)

I Aware implementation uses circular addressing.
I Circular addressing is automatic.

float const pm coeff[] = {...};

float state[] = {};
int current = ;

float filter(float x) {

int k;

float y = ;

state[current] = x;

current = circindex(current, , );

for(k=; k<; ++k) {

y += state[current] * coeff[k];

current = circindex(current, , );
}

return y;

}



Circular and Bit-Reversed Addressing

I Implement y(n) =
K−1∑
k=0

x(n− k)h(k)

I Aware implementation uses circular addressing.
I Circular addressing is automatic.

float const pm coeff[] = {...};

float state[] = {};
int current = ;

float filter(float x) {

int k;

float y = ;

state[current] = x;

current = circindex(current, , );

for(k=; k<; ++k) {

y += state[(current+k)%] * coeff[k];

}

return y;

}



Circular and Bit-Reversed Addressing

I Butterfly-filters end up with bit-reversed addressing.
I Typical example is the Fourier transform.

x(0) + + + X(0)

x(1) + + + X(4)

x(2) + + + X(2)

x(3) + + + X(6)

x(4) + + + X(1)

x(5) + + + X(5)

x(6) + + + X(3)

x(7) + + + X(7)



Circular and Bit-Reversed Addressing

I Index values are bit-reversed.
I Bit-reversal is automatic.

Base index Bits Bit reversed Reversed index

   
   
   
   
   
   
   
   



Filtering Case Study

I Implement y(n) =
K−1∑
k=0

x(n− k)h(k) in assembly.

I Separate data and program memory.
I Zero-Overhead Loops
I Parallel execution.
I Delayed branching.
I Automatic by the compiler in C and C++ when possible.
I Calling convention:

I return value in register r
I first parameter in register r
I second parameter in register r
I third parameter in register r



Zero-Overhead Loops

// float conv(float *x, float const pm *h, int K);

_conv:

entry;

f = ; // accumulator

r = ; // loop counter

i = r; // x

i = r; // h

loop:

f = dm(i, );
f = pm(i, );
f = f * f;
f = f + f;
r = r + ;
comp(r, r);

if lt jump loop;

exit;

._conv.end:

I naive implementation



Zero-Overhead Loops

// float conv(float *x, float const pm *h, int K);

_conv:

entry;

f = ; // accumulator

i = r; // x

i = r; // h

lcntr = r, do (loop-) until lce;

f = dm(i, );
f = pm(i, );
f = f * f;
f = f + f;

loop:

exit;

._conv.end:

I zero-overhead loops



Parallel Execution

// float conv(float *x, float const pm *h, int K);

_conv:

entry;

f = ; // accumulator

i = r; // x

i = r; // h

lcntr = r, do (loop-) until lce;

f = dm(i, );
f = pm(i, );
f = f * f;
f = f + f;

loop:

exit;

._conv.end:

I naive memory transfers
I single operation per cycle
I full parallelization requires

loop-rotation



Parallel Execution

// float conv(float *x, float const pm *h, int K);

_conv:

entry;

r = r-;
i = r;
i = r;
r = ;

r = r-r,
f = dm(i, m), f = pm(i, m);

lcntr = r, do (loop-) until lce;

f = f * f, f = f + f,
f = dm(i, m), f = pm(i, m);

loop:
f = f * f, f = f + f;
f = f+f;

exit;

._conv.end:

I dm and pm in parallel

I loop has been rotated:
I initial read data before loop
I loop one less interation
I final operations after loop

I data and computation in parallel



Delayed Branching

I exit is a macro expanding to:
i=dm(m,i);
jump (m,i) (db);

rframe;

nop;

I The ADSP- has a three-cycle instruction pipeline.
I jump forces the instruction pipeline to flush
I two-cycle stall to refill the pipeline

I A delayed branch does not flush the instruction pipeline.
I executes two additional instructions before jumping
I eliminates the two-cycle stall


