
ETI210 - IC Project & Verification Assignments

 Page I

Table of contents

1. Assignment 1: The Lion Cage ...1
1.1. Assignment specification ...1
1.2. System implementation ...1
1.3. Conclusion...2

2. Assignment 2: The Direct Mapped FIR filter ...3
2.1. Assignment specification ...3
2.2. Wordlength consideration...3
2.3. System implementation ...4
2.4. Output accuracy verification ..5
2.5. Conclusion...6

3. Assignment 3: The Time Multiplexed FIR filter7
3.1. Assignment specification ...7
3.2. Wordlength consideration...7
3.3. System implementation ...8
3.4. Output accuracy verification ..10
3.5. Conclusion...11

4. Assignment 4a: Synthesis of assignment 3 ..11
4.1. What constraints were set in Design Compiler?11

4.1.1. Maximum speed...11
4.1.2. Minimum area ...12

4.2. Report the area for the sub-blocks..12
4.3. What is the critical path for the design? ..13

4.3.1. Maximum speed...13
4.3.2. Minimum area ...13

4.4. Which blocks are in the critical path and what are the
individual delays for each block? ...14

4.4.1. Maximum speed...14
4.4.2. Minimum area ...14

4.5. Report maximal clock frequency and suggest how you could
increase it at the register transfer level. ...14
4.6. What are the differences between the high speed and low area
synthesis results? ...15

5. Assignment 4b: Place-and-route of assignment 315
5.1. Compare the final area with the estimated area from the
synthesis tool. Only compare the core area. ...15
5.2. Show layout. ..16
5.3. Show script-files produced during P&R. ...16
5.4. Present and discuss violations..16
5.5. Conclusion...17

ETI210 - IC Project & Verification Assignments

 Page 1 of 18

1. Assignment 1: The Lion Cage

1.1. Assignment specification

g1: 0 -> 1 -> 1 -> 0 -> 0

g0: 0 -> 0 -> 1 -> 1 -> 0

Lion exits the cage

Lion enters the cage

(a) Lion Cage physical construction and the placement of two
photo sensors

(b) Corresponding sensors’ output
sequence upon events

Figure 1. The Lion Cage system specification

Figure 1(a) above shows the system specification for this assignment. A smart
system is supposed to be designed with using the installed photo sensors in the lion
cage tunnel to detect the movements of lions between the lion cage and outside
enclosure. A danger light as a system output indicator should turn on when at least one
lion enters the tunnel from the cage side, and lights off when both lions are inside the
cage.

1.2. System implementation

The entire system is controlled by using a finite state machine (Mealy machine)
as shown in Figure 2. During the system development, two basic properties had been
considered into the design:

(1) Generic: The system structure should not be restricted with the number of
lions under detection.

(2) Safety: With the aid of initial state, system will be properly initialized upon
system reset. The only assumption here is made that all lions are
staying together (does not matter where they are).

Overall, the finite state machine consists of 7 states with one 2-bit counter
involved. The counter is needed here to watch out the number of lions entering into
the cage in order to determine the status of output light.

State 0 – “lionOut_ini”: This is an initial state listens to the system reset. State
transitions are made based on the different sensor value patterns. With “g1 = 0 & g0 =
1”, the lion’s moving direction - towards lion cage is detected, so the case of all lions

ETI210 - IC Project & Verification Assignments

 Page 2 of 18

are initially outside enclosure can be deduced, consequently the lion counter value is
set to 0. The opposite case happens when “g1 = 1 & g0 = 0”, a moving direction of
exiting lion cage is sensed, and all lions are initially inside the lion cage is deduced,
where the corresponding lion counter value is then set to 2.

State 1
lionIn

light = “0?if
lion_cnt = 2

State 3
walkOut1

light = “1”

State 0
lionOut_ini

light = “1”

lion_cnt = “00”

State 4
walkOut3

light = “1”

State 6
lionOut

light = “1”

reset

g0 = ‘0?&
g1 = ‘1’

g0 = ‘1?&
g1 = ‘0’

g0 = ‘0?&
g1 = ‘1’

g0 = ‘1?&
g1 = ‘0’

g0 = ‘0?&
g1 = ‘1’

State 5
walkOut

light = “1”

lion_cnt = lion_cnt - 1

g0 = ‘1?&
g1 = ‘0’

g0 = ‘0?&
g1 = ‘0’

State 2
walkIn

light = “1”

lion_cnt = lion_cnt + 1

g0 = ‘0?&
g1 = ‘0’

lion_cnt = “00”

g0 = ‘1?& g1 = ‘0’

lion_cnt = “10”

g0 = ‘0?& g1 = ‘1’

Figure 2. Finite State Machine of the Lion Cage System

State 1 & 6 – “lionIn” & “lionOut”: These are two ending transition states,
which indicate a lion has passed through the tunnel, enters either to the lion cage side
or outside enclosure. Two different state transitions could be triggered there, since a
lion may move back in direction or a new lion may follow it moving in the same
direction.

State 2 & 5 – “walkIn” & “walkOut”: These are two un-conditional states,
which are only used to update the lion counter values. In the direction of entering lion
cage – state 2, counter value is incremented; in contrast, counter value decrements
when lion enters the outside enclosure – state 5.

State 3 & 4 – “walkOut1” & “walkOut3”: These are two intermediate transition
states. State transition is made upon the sensor value changes.

Output danger light indicator turns off only when the lion counter is equal to 2
and the current state is in state 1 – “lionIn”.

1.3. Conclusion

Finally, system works as expected. The captured ModelSim simulation result is
shown in Figure 3.

During the lab period of this assignment, the only concerning I had was the
VHDL code translation from the conventional programming style to the use of
structured VHDL programming style. In fact it is not hard to do the code changing,
and there wouldn’t be any difference in terms of functionality. However, it is always
hard to do something which you do not see the benefits by doing it.

ETI210 - IC Project & Verification Assignments

 Page 3 of 18

Figure 3. ModelSim simulation

2. Assignment 2: The Direct Mapped FIR filter

2.1. Assignment specification

(a) FIR filter in direct form (b) VHDL file structure and test environment
Figure 4. The direct mapped FIR filter assignment specification

In this assignment a small 7th order FIR filter in direct mapped form is going to
be implemented in VHDL. Under this construction, the FIR filter is highly scalable
due to the property of similarity, as illustrated in the shaded area in Figure 4(a).

2.2. Wordlength consideration

There are two ways of implementing the direct mapped FIR filter. One is to keep
the value precisions during the system calculation in order to avoid data overflow.
And the other way is to introduce data truncation inside the system.

Obviously, there would not be any harm to data results in the first scheme, as all
the value details are kept through the system. However, this increases the required
wordlength, which is further costly in hardware. Referring to Figure 4(a), wordlength
needed after multiplications are fixed, but increases through the following adders by
the factor of log2(N), where N is the number of taps (stages) in the system.
Considering the FIR filter in this assignment, the full precision output wordlength is,

2 2 2log log 1 8 6 log 7 1 17Out In h In hW W W N W W M

ETI210 - IC Project & Verification Assignments

 Page 4 of 18

where M is the filter order.
In second scheme, data truncation can be further implemented in two ways,

either to do data truncation on the final result only, or truncate data after each
multiplication. Again the first method gives better SNR than the second one, due to
the only place of loosing data precision. Whereas the second method gains in the
required hardware area, since all the adders are smaller in size.

To do the data truncation, two different schemes can be used, data quantization
(floor) and rounding. Since rounding data is the same as finding its closest value, so it
is expected to have better SNR than data quantization. However, it is easier to achieve
data quantization than rounding, since there is no extra computation needed.

2.3. System implementation

All the implementation schemes mentioned in the previous section have been
experimented in this assignment. By investigating the filter impulse response
coefficients, linear phase property is utilized in the filter construction, which saves a
considerable number of multipliers in hardware.

D

D

D

D

D

D
8 8 8 8

8 8 8 8

9 9

15

15

9

15

9

15

16 16 17

6
h0

6
h1

6
h2

6
h3

x[n]

y[n]

D
8

D

D

D

D

D

D
8 8 8 8

8 8 8 8

9 9

15

15

9

15

9

15

16 16 17

6
h0

6
h1

6
h2

6
h3

x[n]

y[n]

D
8

Q
8

(a) Method 1 – Full precision computation (b) Method 2 – Data truncation on the output

D

D

D

D

D

D
8 8 8 8

8 8 8 8

9 9

Q

Q

9

Q

9

Q

15 15 15

6
h0

6
h1

6
h2

6
h3

x[n]

y[n]

D
8

Q
8

Q

15

Q

15

Q

15

Q

15

(c) Method 3 – Data truncations after each multiplication & on the final result
Figure 5. The direct mapped FIR filter structures

ETI210 - IC Project & Verification Assignments

 Page 5 of 18

2.4. Output accuracy verification

0 200 400 600 800 1000
-1

-0.5

0

0.5

1
x 10

4 Output signal from MATLAB

Sample

M
ag

ni
tu

de

0 200 400 600 800 1000
-1

-0.5

0

0.5

1
x 10

4 Output signal from VHDL

Sample

M
ag

ni
tu

de

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.5

0

0.5

1
Signal difference between MATLAB & VHDL

Sample

M
ag

ni
tu

de

0 200 400 600 800 1000

-0.5

0

0.5

Quantized output signal from MATLAB, 8-bit

Sample

M
ag

ni
tu

de

0 200 400 600 800 1000

-0.5

0

0.5

Quantized output signal from VHDL, 8-bit

Sample

M
ag

ni
tu

de

0 100 200 300 400 500 600 700 800 900 1000

-6

-4

-2

0
x 10-3 Signal difference between MATLAB & VHDL

Sample
M

ag
ni

tu
de

(a) Result from method 1 – Full precision computation

(b) Result from method 2a – 8-bit quantized calculation

10

10

10 log

.^ 2
10 log 34.7444

_ .^ 2

signal

noise

P
SQNR

P

sum y
dB

sum y diff

0 200 400 600 800 1000

-0.5

0

0.5

Rounded output signal from MATLAB, 8-bit

Sample

M
ag

ni
tu

de

0 200 400 600 800 1000

-0.5

0

0.5

Rounded output signal from VHDL, 8-bit

Sample

M
ag

ni
tu

de

0 100 200 300 400 500 600 700 800 900 1000

-2

0

2

x 10-3 Signal difference between MATLAB & VHDL

Sample

M
ag

ni
tu

de

0 200 400 600 800 1000

-0.5

0

0.5

Quantized output signal from MATLAB, 8-bit

Sample

M
ag

ni
tu

de

0 200 400 600 800 1000

-0.5

0

0.5

Quantized output signal from VHDL, 8-bit

Sample

M
ag

ni
tu

de

0 100 200 300 400 500 600 700 800 900 1000

-6

-4

-2

0
x 10-3 Signal difference between MATLAB & VHDL

Sample

M
ag

ni
tu

de

(b) Result from method 2b – 8-bit rounded calculation
(Common rounding scheme)

40.507SQNR dB

(c) Result from method 3 – 10-bit quantization after each
multiplication

34.7444SQNR dB

Figure 6. Calculation accuracy comparisons between MATLAB calculation and filtering in VHDL

There are several points can be exploited from records shown in Figure 6. First
of all, results from method 2a and 2b clearly show that, a higher SNR is achieved by

ETI210 - IC Project & Verification Assignments

 Page 6 of 18

using data rounding than the simple data quantization. Secondly, figure (c) exhibits a
similar result as obtained by using method 2a, which means reducing data precision
inside the system after each multiplication from 15-bit down to 10-bit, will not reduce
the output accuracy in this case. This is because all the filter impulse response
coefficients are small here, so removing the redundant data bits during the calculation
will not harm the system.

In order to experience more on data truncations, two series of simulations are
carried out in this assignment. Firstly, by using the filter structure in method 2a,
output SNR respect to output data bits is investigated, as shown in Table 1.

Table 1. SNR respect to output data bits in method 2a – Quantization on the output.

6-bit 8-bit 10-bit 14-bit
SNR [dB] 22.6774 34.7444 46.9254 75.085

Result verifies the famous SNR expression stated that,

1020 log 2 1.76 6.02 1.76SQNR n dB n dB
 eq 1.

Which represents a 6dB SQNR (SNR) change will be introduced into the system
whenever an additional bit devoted to or removed from quantization.

Secondly, output SNR influenced by different quantization resolutions after each
multiplication is examined by using filter structure in method 3, as shown in Table 2.

Table 2. SNR respect to quantization resolutions during system calculation in method 3 –
Quantization following by each multiplication.

7-bit 8-bit 9-bit 10-bit 15-bit
SNR [dB] 23.6721 27.6785 30.7054 34.7444 34.7444

2.5. Conclusion

Data truncation investigation was a main focus in this assignment. Different data
truncation places and several truncation schemes are carried out during the FIR filter
implementation.

One careless mistake during the assignment was the computation of SNR in
MATLAB. Since the input data series has the DC bias value different from 0, so,

2

10 10 210 log 10 logsignal signal

noise noise

P
SQNR

P
 eq 2

Due to the wrong expression used in the beginning, SNR in quantization was higher
than the data rounding; therefore I was confused for a long time. But this is a good
point to remind.

ETI210 - IC Project & Verification Assignments

 Page 7 of 18

3. Assignment 3: The Time Multiplexed FIR filter

3.1. Assignment specification

Valid_i

System computation

Valid_o

Data_o

Data_i

(a) Block diagram of time Multiplexed FIR filter (b) Input/Output synchronization protocol

(c) SRAM control signals and timing chart

Figure 7. The time multiplexed FIR filter assignment specification

To achieve the same filter function, FIR filter can be implemented by using the
minimum hardware resources, where the reduced area comes at the cost of system
computation time, therefore power dissipation. In this assignment, a 35th order time
multiplexed FIR filter is going to be implemented in VHDL.

Figure 7(a) shows the block diagram and data flow of the time-multiplexed FIR
filter. Input data are sequentially clocked into the system, where they are buffered by a
SRAM module. All 36 filter impulse response coefficients are stored inside the ROM,
and a small ALU is used to do the necessary computations. Controller is responsible
for processing synchronizations and administrates the collaborations between
different sub-modules.

Figure 7(b) describes the engaged communication protocol, which is used to
synchronize data input/output and system computation.

3.2. Wordlength consideration

No data truncation is considered in this assignment, so precision calculation is
kept through the system. By using the same equation applied in previous assignment,
output data wordlength is obtained as,

ETI210 - IC Project & Verification Assignments

 Page 8 of 18

2 2log 16 16 log 36 38Out In hW W W N

Table 3. Wordlength requirements

 WInput WCoeff. WMult. WAdd. WMac_Reg. WOutput

Wordlenth 16 16 32 38 38 38 15 23

Since the filter coefficients are 2’s complement represented, so the output data
should be scaled down by amount of 152 , which is achieved by right shifting 15-bit
on the output data.

3.3. System implementation

Since all the corresponding data samples have to be present at the right moment
in order to do the necessary MAC arithmetic, so one of the challenges in this
assignment is to control the data flow inside system. To ease the data handling, the
SRAM module is configured as a circular buffer, as illustrated in Figure 8.

Write pointer
Header

Read pointer

Figure 8. Circular buffer with its pointers

Three pointers are accompanied there. “Write pointer” is used to remember
where the new incoming data should be stored at. Besides, it is also used as a tail
pointer to indicate the end of processing elements for current iteration. “Header”, as
the name implies, points at the beginning of the circular buffer. “Read pointer” is used
for reading data out from buffer, starts from the “Header” until tail point indicated by
the “Write pointer”. In transient state, where the circular buffer has not been
circulated back for the initial 36 data samples, the “Header” will stay at the beginning
without any movements. In steady state, “Header” is incremented by one position at a
time whenever a new data sample comes in.

Figure 9 on next page depicts the architecture of time multiplexed FIR filter,
where all the sub-modules are central controlled by a FSM. “valid” signal on MAC
module is used for enabling the MAC register to store new data; “load” signal
controls the output register in MAC unit to clock out new result in the end of each
processing iteration, which avoids the intermediate results being present on the output
data bus while each filtering iteration is still in progress; “clear” signal is used to
initialize the MAC register in the beginning of each processing iteration.

ETI210 - IC Project & Verification Assignments

 Page 9 of 18

0

REG

REG

SRAM

data - x[n]

16

ROM

coeff. - H[n]16

mac.vhd

SPS4_36x16.v

rom.vhd

R
A

M
_count_head

R
A

M
_count

R
AM

_w
rite_count

R
O

M
_count

MUX

clear

valid

MUX

load

clk

clk

clk
valid_i

rst

data_o

data_i

MUX

FSM
(controller.vhd)

Figure 9. Architecture of time multiplexed FIR filter

wait_input

ROM_count = 0;
RAM_count = RAM_write_count;

RAM_WEN = 1;
RAM_CSN = 1;

Valid = 0;
MAC_en = 0;

MAC_clear = 0;
load_MAC = 0;

read_input

ROM_count = 0;
RAM_count = RAM_count_head;

RAM_WEN = 1;
RAM_CSN = 0;

Valid = 0;
MAC_en = 0;

MAC_clear = 0;
load_MAC = 0;

conv1

RAM_count ++;
RAM_WEN = 1;
RAM_CSN = 0;

Valid = 0;
MAC_en = 1;

MAC_clear = 1;
load_MAC = 0;

ROM_count = RAM_write_count,

if RAM_overflow = false; else
ROM_count = 36;

conv2

ROM_count --;
RAM_count ++;
RAM_WEN = 1;
RAM_CSN = 0;

Valid = 0;
MAC_en = 1;

MAC_clear = 0;
load_MAC = 0;

valid_i = 1

buffer_input

ROM_count = 0;
RAM_count = RAM_write_count;

RAM_WEN = 0;
RAM_CSN = 0;

Valid = 0;
MAC_en = 0;

MAC_clear = 0;
load_MAC = 0;

RAM_count_head ++,
if RAM_overflow = true

conv_done

ROM_count = 0;
RAM_count = RAM_write_count;

RAM_write_count ++;
RAM_WEN = 1;
RAM_CSN = 1;

Valid = 1;
MAC_en = 1;

MAC_clear = 0;
load_MAC = 1;

RAM_cout =
RAM_write_count

RAM_CSN = 1

RAM_cout <
RAM_write_count

RAM_cout =
RAM_write_count

RAM_CSN = 1

Figure 10. FSM of the central controller

ETI210 - IC Project & Verification Assignments

 Page 10 of 18

FSM in the central controller contains 6 states, as shown in Figure 10.
“wait_input”: This is an idle state. FSM listens to the starting signal – “valid_i”.

Upon the event of “valid_i” signal going high, FSM jumps to the input data buffering
state.

“buffer_input”: Incoming data is stored in the SRAM at the position pointed by
“RAM_write_count”.

“Read_input”: Since reading data out from SRAM has 1 clock cycle latency, so
this state initializes the control signals and reading address for the SRAM.

“conv1”: ALU starts processing the input data read out from SRAM. Internal
register in the MAC unit is initialized in this state.

“conv2”: ALU processing state. FSM moves on when the SRAM reading
pointer reaches the tail pointer in the circular buffer.

“conv_done”: ALU computation finished. Final result is clocked into the output
register in MAC unit and being present on the output data bus. The flag of calculation
done is toggled.

3.4. Output accuracy verification

20 40 60 80 100 120 140 160 180 200
-3

-2

-1

0

1

2

3
x 104 Input data samples

Samles

M
ag

ni
tu

de

20 40 60 80 100 120 140 160 180 200

-3

-2

-1

0

1

2

3

4
x 104 Output data samples, 16-bit quantized in MATLAB

Samles

M
ag

ni
tu

de

20 40 60 80 100 120 140 160 180 200

-3

-2

-1

0

1

2

3

4
x 104 Output data samples, VHDL

Samles

M
ag

ni
tu

de

0 50 100 150 200
-1

-0.5

0

0.5

1
Differences in output data samples

Samles

M
ag

ni
tu

de

(a) (b)

(c) (d)

Figure 11. Calculation accuracy comparison between MATLAB and system
designed by VHDL. (a) Original input data samples. (b) Output data samples
filtered by using full precision calculations in MATLAB. (c) Output data sample
differences between MATLAB calculation and Time Multiplexed FIR calculation.
(d) Output data samples filtered by using full precision calculations in Time
Multiplexed FIR (VHDL).

Since there is no data truncation involved during the filtering process, so no
value difference is observed from the output data plot when comparing with the full
precision calculation done in MATLAB.

ETI210 - IC Project & Verification Assignments

 Page 11 of 18

3.5. Conclusion

Time multiplexed FIR filter works as expected. Implementation on the circular
buffer inside SRAM was the main concern in this assignment. By expanding the
theoretical expression of data convolution, relations on input data samples and filter
coefficients are evident, and the rest of experiments are straightforward.

By comparing the direct mapped FIR filter implemented in assignment 2 and the
time multiplexed FIR filter, we can conclude as following:

Direct mapped FIR filter:
(1) Filter processes incoming data samples in parallel, where each output is

calculated in one clock cycle. Therefore the throughput of system is high and
independent with the filter order.

(2) High system throughput is paid out by the required hardware resources and
therefore areas: m+1 fixed multiplier, m adders and m registers.

Time multiplexed FIR filter:
(1) Filter processes incoming data samples sequentially, where each output is

done in multi-cycles. In this assignment, since a SRAM module is engaged for
buffering input data, so some extra clock cycles are required: 1 clock cycle data
writing into SRAM, 1 clock cycle reading latency from SRAM and 1 clock cycle for
entering into the processing state in FSM, so overall 3 1 3 35 1 39m clock
cycles are needed to produce one data output. Due to this multi-cycle data processing,
system throughput is mainly dependent on the filter order.

(2) Hardware resources are fixed and independent with the filter order: 1
flexible multiplier, 1 adder and 1 register.

The choice of proper filter architecture is dependent on the applications. For
instance, the direct mapped filter can be used for high-end circumstances, where
speed is crucial and cost is careless. Time multiplexed filter architecture is nice for
lower-end applications, since it occupies less hardware area and flexible in
functionality, but being paid by the required processing time.

4. Assignment 4a: Synthesis of assignment 3

4.1. What constraints were set in Design Compiler?

4.1.1. Maximum speed

Two phases are involved on synthesis in pursuit of maximum system speed. In
phases 1, the expected clock period was set up to a non-reachable value, for instance,
1nS in my case. The synthesis tool will then try it’s best to optimize design to reach
the timing constraint. But since we know the dreaming clock frequency is nonrealistic,

ETI210 - IC Project & Verification Assignments

 Page 12 of 18

so system clock delay violation was expected to see from the synthesis report. In
phase 2, the slack clock delay from the synthesis result in previous iteration was
added to the initial clock period, which results in a minimum achievable system clock
delay for my design, therefore the maximum system speed. Figure 12(a) shows the
visualization of the final timing constraint used in the design synthesis of phase 2.

4.1.2. Minimum area

In order to get a minimum design in terms of silicon area, design synthesis was
slacked on the timing constraint, which to avoid the influences from system speed
being as the crucial criterion. Instead, the maximum area expectation was set to 0 as
the design synthesis constraint, as shown in Figure 12(b).

(a) Timing constraint (b) Area constraint
Figure 12. Synthesis constraints

4.2. Report the area for the sub-blocks.

Table 4. Report of system areas for two different synthesis aspects

 Max. speed [m2] Percentage Min. area [m2] Percentage
fir_pads (Wrapper) 1,513,956.972636 100% 1,458,395.4042 100%

fir 217,514.6622 14.4% 161,954.3862 11.1%
controller 16,319.8746 1.1% 16,088.2146 1.1%

mac 149,533.938 9.9% 94,205.4192 6.5%
rom 6,678.72 0.4% 6,678.72 0.5%

SPS4_36x16 (SRAM)

ETI210 - IC Project & Verification Assignments

 Page 13 of 18

Table 5. Report of MAC areas for two different synthesis aspects

 Max. speed [m2] Percentage Min. area [m2] Percentage
mac 149,533.938 100% mac 94,205.4192 100%

DW01_add_1 23,357.673 15.62% DW01_add_0 9,528.3 10.11%
DW_mult_tc_1 97,278.6348 65.05% DW_mult_tc_0 61,458.9606 65.24%

registers 28,897.6302 19.33% registers 23,218.1586 24.65%

4.3. What is the critical path for the design?

4.3.1. Maximum speed

(a) Overview of the critical path

(b) Critical path in MAC module
Figure 13. Critical path in maximum speed design

4.3.2. Minimum area

Figure 14. Critical path in minimum area design

ETI210 - IC Project & Verification Assignments

 Page 14 of 18

4.4. Which blocks are in the critical path and what are the
individual delays for each block?

4.4.1. Maximum speed

Refer to Figure 13, the critical path in maximum speed design is the input data
bus going from SRAM to the MAC module.

Table 6. Signal delays in the critical path

 Path delay [nS] Percentage
SRAM 5 29.62%

Multiplier 5.28 31.28%
Adder 5.91 35.01%

Output register 0.69 4.09%
Total 16.88 100%

4.4.2. Minimum area

Refer to Figure 14, the critical path in minimum area design is the filter
coefficients data bus starting from the controller until the MAC module.

Table 7. Path delays in the critical path

 Path delay [nS] Percentage
Controller 0.72 2.27%

ROM 4.96 15.64%
Multiplier 7.1 22.38%

Adder 17.92 56.49%
Output register 1.02 3.22%

Total 31.72 100%

4.5. Report maximal clock frequency and suggest how you
could increase it at the register transfer level.

It is obvious to see from Table 6 and Table 7, “Adder” unit inside MAC module
is the heaviest part in the critical path, which is unusual when comparing the strength
of adder with multiplier that located beside. But this is the case in my design, because
the reported delay of the “Adder” unit also includes signal delays on the input and
output MUXs accompanied with the real addition unit, as shown in Figure 15. So in
order to speed up system, pipeline registers might be considered to partition the adder
away from the MUXs.

In addition, another crucial path in both designs is the data bus between MAC
module and the data source, which is the SRAM module for speed version and ROM

ETI210 - IC Project & Verification Assignments

 Page 15 of 18

module in the area design. One way to solve this problem is to insert the pipeline
register in between of them.

0

MUX

MUX

Figure 15. “Adder” unit in the MAC module

4.6. What are the differences between the high speed and low
area synthesis results?

Table 4 verifies that different design constraints result in different synthesis
output. Comparing two designs, the main difference comes from the different area
contribution of the MAC module. Numerically, system optimized for speed uses 3.4%
more silicon area than the area version in this case. This is because different adder and
multiplier will be elaborately selected according to the different design constraints.
Table 5 summarizes this in details.

So when considering a system design, there will always be a trade-off between
silicon area and processing speed.

5. Assignment 4b: Place-and-route of assignment 3

5.1. Compare the final area with the estimated area from the
synthesis tool. Only compare the core area.

Table 8. Core area comparisons between synthesis and place & route for maximum speed design.

 Max. speed [m2] Percentage Min. area [m2] Core utilization
fir_pads (Wrapper) 1,513,956.972636 100% 3,735,437.522 58.97%

Apparently, the final core area after place and route is much larger than the one
got from Synopsys synthesis tool. Here the main reason is that my design is
pad-limited, therefore the actual core utilization is very little, as we can see both from
the numerical value 58.97% and the design layout shown in Figure 16. So by using
this information to calculate the actual core area, it becomes,

23,735,437.522 58.97% 2,202,787.5067234 mCoreA

Which is then close to the synthesis result.

ETI210 - IC Project & Verification Assignments

 Page 16 of 18

5.2. Show layout.

Figure 16. Design layout

5.3. Show script-files produced during P&R.

Table 9. List of script files used in Place & Route

Script file Description
1_verilogin.mac Import design libraries (.lef), design files and netlists.
2_floorplan.mac Floor plan; Place IO pads; Place Blocks; Place Cells.
3_pads.mac Place IO pads based on the design constraints.
4_powerroute.mac Construct power rings around core and memory block.
5_fillperi.mac Place filler IO cells.
6_connectrings.mac Connect power rings.
7_import.mac Import design files with the constructed clock tree.
8_fillercells.mac Place filler cells.
9_route.mac Route signals.

All of these 9 script files are enclosed in the file attachments.

5.4. Present and discuss violations.

There are two clusters of violations, one is around the IO pins of SRAM module,
and the other one is around the system IO pins. But both of them can be ignored in
this assignment. The detailed violation report is enclosed in the file attachments.

ETI210 - IC Project & Verification Assignments

 Page 17 of 18

5.5. Conclusion

It was a nice tutorial in assignments 4 and 5. I have got the main idea on how an
ASIC chip is performed from the RTL level down to the gate level. I have also
experimented on how design constraints influenced the final chip layout in terms of
silicon area.

Comparing with 3 previous assignments (VHDL designs), the design synthesis
and place & route are more trouble like. To me, I think the tasks themselves are
straightforward, but the doubts came from how to use the provided tools correctly. It
is great of using better software that has better graphical user interface, but it would
be nice if we can keep the lab menu updated simultaneously, because personally I got
a lot of problems due to the performed wrong lab procedures or wrong operations.

Overall, I was really enjoyed in the trip provided from assignment 1 to 5.

