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1. Assignment 1: The Lion Cage 

1.1. Assignment specification 

g1: 0 -> 1 -> 1 -> 0 -> 0

g0: 0 -> 0 -> 1 -> 1 -> 0

Lion exits the cage

Lion enters the cage

(a) Lion Cage physical construction and the placement of two 
photo sensors

(b) Corresponding sensors’ output 
sequence upon events

Figure 1. The Lion Cage system specification 

Figure 1(a) above shows the system specification for this assignment. A smart 
system is supposed to be designed with using the installed photo sensors in the lion 
cage tunnel to detect the movements of lions between the lion cage and outside 
enclosure. A danger light as a system output indicator should turn on when at least one 
lion enters the tunnel from the cage side, and lights off when both lions are inside the 
cage.

1.2. System implementation 

The entire system is controlled by using a finite state machine (Mealy machine) 
as shown in Figure 2. During the system development, two basic properties had been 
considered into the design: 

(1) Generic: The system structure should not be restricted with the number of 
lions under detection. 

(2) Safety: With the aid of initial state, system will be properly initialized upon 
system reset. The only assumption here is made that all lions are 
staying together (does not matter where they are). 

Overall, the finite state machine consists of 7 states with one 2-bit counter 
involved. The counter is needed here to watch out the number of lions entering into 
the cage in order to determine the status of output light. 

State 0 – “lionOut_ini”: This is an initial state listens to the system reset. State 
transitions are made based on the different sensor value patterns. With “g1 = 0 & g0 = 
1”, the lion’s moving direction - towards lion cage is detected, so the case of all lions 
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are initially outside enclosure can be deduced, consequently the lion counter value is 
set to 0. The opposite case happens when “g1 = 1 & g0 = 0”, a moving direction of 
exiting lion cage is sensed, and all lions are initially inside the lion cage is deduced, 
where the corresponding lion counter value is then set to 2. 

State 1
lionIn

--------------
light = “0?if 
lion_cnt = 2

State 3
walkOut1
--------------
light = “1”

State 0
lionOut_ini
--------------
light = “1”

lion_cnt = “00”

State 4
walkOut3
--------------
light = “1”

State 6
lionOut

--------------
light = “1”

reset

g0 = ‘0?& 
g1 = ‘1’

g0 = ‘1?& 
g1 = ‘0’

g0 = ‘0?& 
g1 = ‘1’

g0 = ‘1?& 
g1 = ‘0’

g0 = ‘0?& 
g1 = ‘1’

State 5
walkOut

--------------
light = “1”

lion_cnt = lion_cnt - 1

g0 = ‘1?& 
g1 = ‘0’

g0 = ‘0?& 
g1 = ‘0’

State 2
walkIn

--------------
light = “1”

lion_cnt = lion_cnt + 1

g0 = ‘0?& 
g1 = ‘0’

lion_cnt = “00”
--------------

g0 = ‘1?& g1 = ‘0’

lion_cnt = “10”
--------------

g0 = ‘0?& g1 = ‘1’

Figure 2. Finite State Machine of the Lion Cage System

State 1 & 6 – “lionIn” & “lionOut”: These are two ending transition states, 
which indicate a lion has passed through the tunnel, enters either to the lion cage side 
or outside enclosure. Two different state transitions could be triggered there, since a 
lion may move back in direction or a new lion may follow it moving in the same 
direction.

State 2 & 5 – “walkIn” & “walkOut”: These are two un-conditional states, 
which are only used to update the lion counter values. In the direction of entering lion 
cage – state 2, counter value is incremented; in contrast, counter value decrements 
when lion enters the outside enclosure – state 5. 

State 3 & 4 – “walkOut1” & “walkOut3”: These are two intermediate transition 
states. State transition is made upon the sensor value changes. 

Output danger light indicator turns off only when the lion counter is equal to 2 
and the current state is in state 1 – “lionIn”. 

1.3. Conclusion 

Finally, system works as expected. The captured ModelSim simulation result is 
shown in Figure 3. 

During the lab period of this assignment, the only concerning I had was the 
VHDL code translation from the conventional programming style to the use of 
structured VHDL programming style. In fact it is not hard to do the code changing, 
and there wouldn’t be any difference in terms of functionality. However, it is always 
hard to do something which you do not see the benefits by doing it. 
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Figure 3. ModelSim simulation

2. Assignment 2: The Direct Mapped FIR filter 

2.1. Assignment specification 

(a) FIR filter in direct form (b) VHDL file structure and test environment
Figure 4. The direct mapped FIR filter assignment specification 

In this assignment a small 7th order FIR filter in direct mapped form is going to 
be implemented in VHDL. Under this construction, the FIR filter is highly scalable 
due to the property of similarity, as illustrated in the shaded area in Figure 4(a). 

2.2. Wordlength consideration 

There are two ways of implementing the direct mapped FIR filter. One is to keep 
the value precisions during the system calculation in order to avoid data overflow. 
And the other way is to introduce data truncation inside the system.  

Obviously, there would not be any harm to data results in the first scheme, as all 
the value details are kept through the system. However, this increases the required 
wordlength, which is further costly in hardware. Referring to Figure 4(a), wordlength 
needed after multiplications are fixed, but increases through the following adders by 
the factor of log2(N), where N is the number of taps (stages) in the system. 
Considering the FIR filter in this assignment, the full precision output wordlength is, 

2 2 2log log 1 8 6 log 7 1 17Out In h In hW W W N W W M
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where M is the filter order. 
In second scheme, data truncation can be further implemented in two ways, 

either to do data truncation on the final result only, or truncate data after each 
multiplication. Again the first method gives better SNR than the second one, due to 
the only place of loosing data precision. Whereas the second method gains in the 
required hardware area, since all the adders are smaller in size. 

To do the data truncation, two different schemes can be used, data quantization 
(floor) and rounding. Since rounding data is the same as finding its closest value, so it 
is expected to have better SNR than data quantization. However, it is easier to achieve 
data quantization than rounding, since there is no extra computation needed. 

2.3. System implementation 

All the implementation schemes mentioned in the previous section have been 
experimented in this assignment. By investigating the filter impulse response 
coefficients, linear phase property is utilized in the filter construction, which saves a 
considerable number of multipliers in hardware. 
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2.4. Output accuracy verification 
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(a) Result from method 1 – Full precision computation 

(b) Result from method 2a – 8-bit quantized calculation 
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(b) Result from method 2b – 8-bit rounded calculation 
(Common rounding scheme) 

40.507SQNR dB

(c) Result from method 3 – 10-bit quantization after each 
multiplication 

34.7444SQNR dB

Figure 6. Calculation accuracy comparisons between MATLAB calculation and filtering in VHDL 

There are several points can be exploited from records shown in Figure 6. First 
of all, results from method 2a and 2b clearly show that, a higher SNR is achieved by 
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using data rounding than the simple data quantization. Secondly, figure (c) exhibits a 
similar result as obtained by using method 2a, which means reducing data precision 
inside the system after each multiplication from 15-bit down to 10-bit, will not reduce 
the output accuracy in this case. This is because all the filter impulse response 
coefficients are small here, so removing the redundant data bits during the calculation 
will not harm the system. 

In order to experience more on data truncations, two series of simulations are 
carried out in this assignment. Firstly, by using the filter structure in method 2a, 
output SNR respect to output data bits is investigated, as shown in Table 1.  

Table 1. SNR respect to output data bits in method 2a – Quantization on the output. 

6-bit 8-bit 10-bit 14-bit 
SNR [dB] 22.6774 34.7444 46.9254 75.085 

Result verifies the famous SNR expression stated that, 

1020 log 2 1.76 6.02 1.76SQNR n dB n dB
   eq 1.

Which represents a 6dB SQNR (SNR) change will be introduced into the system 
whenever an additional bit devoted to or removed from quantization. 

Secondly, output SNR influenced by different quantization resolutions after each 
multiplication is examined by using filter structure in method 3, as shown in Table 2. 

Table 2. SNR respect to quantization resolutions during system calculation in method 3 – 
Quantization following by each multiplication. 

7-bit 8-bit 9-bit 10-bit 15-bit 
SNR [dB] 23.6721 27.6785 30.7054 34.7444 34.7444 

2.5. Conclusion 

Data truncation investigation was a main focus in this assignment. Different data 
truncation places and several truncation schemes are carried out during the FIR filter 
implementation. 

One careless mistake during the assignment was the computation of SNR in 
MATLAB. Since the input data series has the DC bias value different from 0, so, 

2

10 10 210 log 10 logsignal signal

noise noise

P
SQNR

P
    eq 2

Due to the wrong expression used in the beginning, SNR in quantization was higher 
than the data rounding; therefore I was confused for a long time. But this is a good 
point to remind. 
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3. Assignment 3: The Time Multiplexed FIR filter 

3.1. Assignment specification 

Valid_i

System computation

Valid_o

Data_o

Data_i

(a) Block diagram of time Multiplexed FIR filter (b) Input/Output synchronization protocol

(c) SRAM control signals and timing chart 

Figure 7. The time multiplexed FIR filter assignment specification 

To achieve the same filter function, FIR filter can be implemented by using the 
minimum hardware resources, where the reduced area comes at the cost of system 
computation time, therefore power dissipation. In this assignment, a 35th order time 
multiplexed FIR filter is going to be implemented in VHDL. 

Figure 7(a) shows the block diagram and data flow of the time-multiplexed FIR 
filter. Input data are sequentially clocked into the system, where they are buffered by a 
SRAM module. All 36 filter impulse response coefficients are stored inside the ROM, 
and a small ALU is used to do the necessary computations. Controller is responsible 
for processing synchronizations and administrates the collaborations between 
different sub-modules. 

Figure 7(b) describes the engaged communication protocol, which is used to 
synchronize data input/output and system computation. 

3.2. Wordlength consideration 

No data truncation is considered in this assignment, so precision calculation is 
kept through the system. By using the same equation applied in previous assignment, 
output data wordlength is obtained as, 
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2 2log 16 16 log 36 38Out In hW W W N

Table 3. Wordlength requirements 

 WInput WCoeff. WMult. WAdd. WMac_Reg. WOutput

Wordlenth 16 16 32 38 38 38 15 23

Since the filter coefficients are 2’s complement represented, so the output data 
should be scaled down by amount of 152 , which is achieved by right shifting 15-bit 
on the output data. 

3.3. System implementation 

Since all the corresponding data samples have to be present at the right moment 
in order to do the necessary MAC arithmetic, so one of the challenges in this 
assignment is to control the data flow inside system. To ease the data handling, the 
SRAM module is configured as a circular buffer, as illustrated in Figure 8. 

Write pointer
Header

Read pointer

Figure 8. Circular buffer with its pointers

Three pointers are accompanied there. “Write pointer” is used to remember 
where the new incoming data should be stored at. Besides, it is also used as a tail 
pointer to indicate the end of processing elements for current iteration. “Header”, as 
the name implies, points at the beginning of the circular buffer. “Read pointer” is used 
for reading data out from buffer, starts from the “Header” until tail point indicated by 
the “Write pointer”. In transient state, where the circular buffer has not been 
circulated back for the initial 36 data samples, the “Header” will stay at the beginning 
without any movements. In steady state, “Header” is incremented by one position at a 
time whenever a new data sample comes in. 

Figure 9 on next page depicts the architecture of time multiplexed FIR filter, 
where all the sub-modules are central controlled by a FSM. “valid” signal on MAC 
module is used for enabling the MAC register to store new data; “load” signal 
controls the output register in MAC unit to clock out new result in the end of each 
processing iteration, which avoids the intermediate results being present on the output 
data bus while each filtering iteration is still in progress; “clear” signal is used to 
initialize the MAC register in the beginning of each processing iteration. 
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Figure 9. Architecture of time multiplexed FIR filter 

wait_input
----------------------------------

ROM_count = 0;
RAM_count = RAM_write_count;

RAM_WEN = 1;
RAM_CSN = 1;

Valid = 0;
MAC_en = 0;

MAC_clear = 0;
load_MAC = 0;

read_input
----------------------------------

ROM_count = 0;
RAM_count = RAM_count_head;

RAM_WEN = 1;
RAM_CSN = 0;

Valid = 0;
MAC_en = 0;

MAC_clear = 0;
load_MAC = 0;

conv1
----------------------------------

RAM_count ++;
RAM_WEN = 1;
RAM_CSN = 0;

Valid = 0;
MAC_en = 1;

MAC_clear = 1;
load_MAC = 0;

----------------------------------
ROM_count = RAM_write_count,

if RAM_overflow = false; else
ROM_count = 36;

conv2
----------------------------------

ROM_count --;
RAM_count ++;
RAM_WEN = 1;
RAM_CSN = 0;

Valid = 0;
MAC_en = 1;

MAC_clear = 0;
load_MAC = 0;

valid_i = 1

buffer_input
----------------------------------

ROM_count = 0;
RAM_count = RAM_write_count;

RAM_WEN = 0;
RAM_CSN = 0;

Valid = 0;
MAC_en = 0;

MAC_clear = 0;
load_MAC = 0;

----------------------------------
RAM_count_head ++,
if RAM_overflow = true

conv_done
----------------------------------

ROM_count = 0;
RAM_count = RAM_write_count;

RAM_write_count ++;
RAM_WEN = 1;
RAM_CSN = 1;

Valid = 1;
MAC_en = 1;

MAC_clear = 0;
load_MAC = 1;

RAM_cout = 
RAM_write_count
------------------------

RAM_CSN = 1

RAM_cout < 
RAM_write_count

RAM_cout = 
RAM_write_count
------------------------

RAM_CSN = 1

Figure 10. FSM of the central controller
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FSM in the central controller contains 6 states, as shown in Figure 10. 
“wait_input”: This is an idle state. FSM listens to the starting signal – “valid_i”. 

Upon the event of “valid_i” signal going high, FSM jumps to the input data buffering 
state.

“buffer_input”: Incoming data is stored in the SRAM at the position pointed by 
“RAM_write_count”.

“Read_input”: Since reading data out from SRAM has 1 clock cycle latency, so 
this state initializes the control signals and reading address for the SRAM. 

“conv1”: ALU starts processing the input data read out from SRAM. Internal 
register in the MAC unit is initialized in this state. 

“conv2”: ALU processing state. FSM moves on when the SRAM reading 
pointer reaches the tail pointer in the circular buffer. 

“conv_done”: ALU computation finished. Final result is clocked into the output 
register in MAC unit and being present on the output data bus. The flag of calculation 
done is toggled. 

3.4. Output accuracy verification 
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Figure 11. Calculation accuracy comparison between MATLAB and system 
designed by VHDL. (a) Original input data samples. (b) Output data samples 
filtered by using full precision calculations in MATLAB. (c) Output data sample 
differences between MATLAB calculation and Time Multiplexed FIR calculation. 
(d) Output data samples filtered by using full precision calculations in Time 
Multiplexed FIR (VHDL). 

Since there is no data truncation involved during the filtering process, so no 
value difference is observed from the output data plot when comparing with the full 
precision calculation done in MATLAB. 
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3.5. Conclusion 

Time multiplexed FIR filter works as expected. Implementation on the circular 
buffer inside SRAM was the main concern in this assignment. By expanding the 
theoretical expression of data convolution, relations on input data samples and filter 
coefficients are evident, and the rest of experiments are straightforward. 

By comparing the direct mapped FIR filter implemented in assignment 2 and the 
time multiplexed FIR filter, we can conclude as following: 

Direct mapped FIR filter:
(1) Filter processes incoming data samples in parallel, where each output is 

calculated in one clock cycle. Therefore the throughput of system is high and 
independent with the filter order. 

(2) High system throughput is paid out by the required hardware resources and 
therefore areas: m+1 fixed multiplier, m adders and m registers. 

Time multiplexed FIR filter:
(1) Filter processes incoming data samples sequentially, where each output is 

done in multi-cycles. In this assignment, since a SRAM module is engaged for 
buffering input data, so some extra clock cycles are required: 1 clock cycle data 
writing into SRAM, 1 clock cycle reading latency from SRAM and 1 clock cycle for 
entering into the processing state in FSM, so overall 3 1 3 35 1 39m  clock 
cycles are needed to produce one data output. Due to this multi-cycle data processing, 
system throughput is mainly dependent on the filter order. 

(2) Hardware resources are fixed and independent with the filter order: 1 
flexible multiplier, 1 adder and 1 register. 

The choice of proper filter architecture is dependent on the applications. For 
instance, the direct mapped filter can be used for high-end circumstances, where 
speed is crucial and cost is careless. Time multiplexed filter architecture is nice for 
lower-end applications, since it occupies less hardware area and flexible in 
functionality, but being paid by the required processing time. 

4. Assignment 4a: Synthesis of assignment 3 

4.1. What constraints were set in Design Compiler? 

4.1.1. Maximum speed 

Two phases are involved on synthesis in pursuit of maximum system speed. In 
phases 1, the expected clock period was set up to a non-reachable value, for instance, 
1nS in my case. The synthesis tool will then try it’s best to optimize design to reach 
the timing constraint. But since we know the dreaming clock frequency is nonrealistic, 
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so system clock delay violation was expected to see from the synthesis report. In 
phase 2, the slack clock delay from the synthesis result in previous iteration was 
added to the initial clock period, which results in a minimum achievable system clock 
delay for my design, therefore the maximum system speed. Figure 12(a) shows the 
visualization of the final timing constraint used in the design synthesis of phase 2. 

4.1.2. Minimum area 

In order to get a minimum design in terms of silicon area, design synthesis was 
slacked on the timing constraint, which to avoid the influences from system speed 
being as the crucial criterion. Instead, the maximum area expectation was set to 0 as 
the design synthesis constraint, as shown in Figure 12(b). 

(a) Timing constraint (b) Area constraint 
Figure 12. Synthesis constraints

4.2. Report the area for the sub-blocks. 

Table 4. Report of system areas for two different synthesis aspects 

 Max. speed [ m2] Percentage Min. area [ m2] Percentage
fir_pads (Wrapper) 1,513,956.972636 100% 1,458,395.4042 100% 

fir 217,514.6622 14.4% 161,954.3862 11.1% 
controller 16,319.8746 1.1% 16,088.2146 1.1% 

mac 149,533.938 9.9% 94,205.4192 6.5% 
rom 6,678.72 0.4% 6,678.72 0.5% 

SPS4_36x16 (SRAM) 
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Table 5. Report of MAC areas for two different synthesis aspects 

 Max. speed [ m2] Percentage  Min. area [ m2] Percentage
mac 149,533.938 100% mac 94,205.4192 100% 

DW01_add_1 23,357.673 15.62% DW01_add_0 9,528.3 10.11% 
DW_mult_tc_1 97,278.6348 65.05% DW_mult_tc_0 61,458.9606 65.24% 

registers 28,897.6302 19.33% registers 23,218.1586 24.65% 

4.3. What is the critical path for the design? 

4.3.1. Maximum speed 

(a) Overview of the critical path 

(b) Critical path in MAC module 
Figure 13. Critical path in maximum speed design 

4.3.2. Minimum area 

Figure 14. Critical path in minimum area design 
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4.4. Which blocks are in the critical path and what are the 
individual delays for each block? 

4.4.1. Maximum speed 

Refer to Figure 13, the critical path in maximum speed design is the input data 
bus going from SRAM to the MAC module. 

Table 6. Signal delays in the critical path 

 Path delay [nS] Percentage 
SRAM 5 29.62% 

Multiplier 5.28 31.28% 
Adder 5.91 35.01% 

Output register 0.69 4.09% 
Total 16.88 100% 

4.4.2. Minimum area 

Refer to Figure 14, the critical path in minimum area design is the filter 
coefficients data bus starting from the controller until the MAC module. 

Table 7. Path delays in the critical path 

 Path delay [nS] Percentage 
Controller 0.72 2.27% 

ROM 4.96 15.64% 
Multiplier 7.1 22.38% 

Adder 17.92 56.49% 
Output register 1.02 3.22% 

Total 31.72 100% 

4.5. Report maximal clock frequency and suggest how you 
could increase it at the register transfer level. 

It is obvious to see from Table 6 and Table 7, “Adder” unit inside MAC module 
is the heaviest part in the critical path, which is unusual when comparing the strength 
of adder with multiplier that located beside. But this is the case in my design, because 
the reported delay of the “Adder” unit also includes signal delays on the input and 
output MUXs accompanied with the real addition unit, as shown in Figure 15. So in 
order to speed up system, pipeline registers might be considered to partition the adder 
away from the MUXs. 

In addition, another crucial path in both designs is the data bus between MAC 
module and the data source, which is the SRAM module for speed version and ROM 
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module in the area design. One way to solve this problem is to insert the pipeline 
register in between of them. 

0

MUX

MUX

Figure 15. “Adder” unit in the MAC module 

4.6. What are the differences between the high speed and low 
area synthesis results? 

Table 4 verifies that different design constraints result in different synthesis 
output. Comparing two designs, the main difference comes from the different area 
contribution of the MAC module. Numerically, system optimized for speed uses 3.4% 
more silicon area than the area version in this case. This is because different adder and 
multiplier will be elaborately selected according to the different design constraints. 
Table 5 summarizes this in details. 

So when considering a system design, there will always be a trade-off between 
silicon area and processing speed.  

5. Assignment 4b: Place-and-route of assignment 3 

5.1. Compare the final area with the estimated area from the 
synthesis tool. Only compare the core area. 

Table 8. Core area comparisons between synthesis and place & route for maximum speed design. 

 Max. speed [ m2] Percentage Min. area [ m2] Core utilization
fir_pads (Wrapper) 1,513,956.972636 100% 3,735,437.522 58.97% 

Apparently, the final core area after place and route is much larger than the one 
got from Synopsys synthesis tool. Here the main reason is that my design is 
pad-limited, therefore the actual core utilization is very little, as we can see both from 
the numerical value 58.97% and the design layout shown in Figure 16. So by using 
this information to calculate the actual core area, it becomes, 

23,735,437.522 58.97% 2,202,787.5067234 mCoreA

Which is then close to the synthesis result. 
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5.2. Show layout. 

Figure 16. Design layout 

5.3. Show script-files produced during P&R. 

Table 9. List of script files used in Place & Route 

Script file Description 
1_verilogin.mac Import design libraries (.lef), design files and netlists. 
2_floorplan.mac Floor plan; Place IO pads; Place Blocks; Place Cells. 
3_pads.mac Place IO pads based on the design constraints. 
4_powerroute.mac Construct power rings around core and memory block. 
5_fillperi.mac Place filler IO cells. 
6_connectrings.mac Connect power rings. 
7_import.mac Import design files with the constructed clock tree. 
8_fillercells.mac Place filler cells. 
9_route.mac Route signals. 

All of these 9 script files are enclosed in the file attachments. 

5.4. Present and discuss violations. 

There are two clusters of violations, one is around the IO pins of SRAM module, 
and the other one is around the system IO pins. But both of them can be ignored in 
this assignment. The detailed violation report is enclosed in the file attachments. 
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5.5. Conclusion 

It was a nice tutorial in assignments 4 and 5. I have got the main idea on how an 
ASIC chip is performed from the RTL level down to the gate level. I have also 
experimented on how design constraints influenced the final chip layout in terms of 
silicon area. 

Comparing with 3 previous assignments (VHDL designs), the design synthesis 
and place & route are more trouble like. To me, I think the tasks themselves are 
straightforward, but the doubts came from how to use the provided tools correctly. It 
is great of using better software that has better graphical user interface, but it would 
be nice if we can keep the lab menu updated simultaneously, because personally I got 
a lot of problems due to the performed wrong lab procedures or wrong operations. 

Overall, I was really enjoyed in the trip provided from assignment 1 to 5. 


