Digital IC-Project and Verification

ASIC Synthesis

Deepak Dasalukunte & Joachim Rodrigues

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verification

Outline

- Objective of Presentation
- Synthesis
- Basic synthesis flow
- · DesignCompiler
- Synthesis script

Objective of the Presentation

- Introduce basic synthesis
- Guide that can be used to create a basic synthesis flow
 - Steps
 - Actual commands
- Getting familiar with the synthesis environment

What is Synthesis?

- A process which combines two or more pre-existing elements resulting in the formation of something new.
- Synthesis links the conceptual description of the logic functions needed for the design to their actual physical architecture elements in the underlying device.

What is Synthesis?

Synthesis Tool -Design Compiler (DC)

- Common tool provided by Synopsys
- Well-known in industry and academia
- Online support: https://solvnet.synopsys.com/
- · Command help in Synopsys-DC GUI.
- · Graphical mode
- · Shell mode

Synthesis Flow

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verification

Libraries

- Vendor delivers technology libraries as ASCII file (*.lib_)
 - describes parameters and rules for a particular technology(130nm,90nm, 65nm...).
- Every process consists of logic cells that has different functionality.
 - full adder, multiplier, flip-flop, XOR, NAND etc
- Compiled for Synopsys DC usage (*.db)
- Various libraries, e.g., low-leakage (LL) or high-speed (HS) are usually available.

Libraries

- · Target library is used by DC to build the circuit
- DC chooses gates from libraries
- · Gate timing information is included in libraries
- Defined in .synopsys_dc.setup
 - Copied into the working directory when init scripts are run.
 - specifies the libraries being used and other configurations.
- \cdot *.lib information for the memory needs to be read by DC.
 - **SYNTAX:** read_lib memoryX.lib
 - **SYNTAX:** write_lib memoryX (writes the memory in .db format)
- If *.db is already available, include them in the *link_library* and *target_library*

Synthesis Flow

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verification

٠

- DC reads both RTL designs and gate-level netlist.
- DC reads design files with *analyze* and *elaborate* commands
 - **analyze**: analyzes HDL files and stores the intermediate format for the HDL description in the specified library
 - elaborate: Builds a design from the intermediate format, a VHDL entity and architecture
 - Every instance becomes unique.

Syntax: Analyze

analyze

- [-library library_name]
- [-format vhdl | verilog | sverilog]
- file_list
- -library library_name
 - Maps the work library to *library_name*.
 - By default, analyze stores all output in the work library.
- -format vhdl | verilog | sverilog
 - Specifies the format of the files that are to be analyzed;

file_list

Specifies a list of files to be analyzed. When specifying more than one file, enclose the files in braces: { }.

Example:

analyze -format vhdl -lib WORK {../vhdl/your_design.vhd}

Syntax: Elaborate

```
elaborate design_name
  [-library library_name | -work library_name]
  [-architecture arch_name]
  [-update]
```

design_name

Specifies the name of the design to be built. This design can be a Verilog module, a VHDL entity, or a VHDL configuration.

-library library_name

Specifies the library name that work is to be mapped to. By default, elaborate looks in the *work* library for the design to be built.

-architecture arch_name

Specifies the name of the architecture, .e.g., behavioral, structural, rhubarb, ... Example:

elaborate fir -lib WORK -arch structural

Synthesis Flow

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verification

Clock Definition

In DC, clock is ideal: no buffers, no DRC, no optimization

- **Required Definitions**
 - Clock period
 - Clock name
 - Clock source
 - (Duty cycle (50% default))
 - (Offset/skew)

- A clock constrains timing paths between registers.
- A design may have several clocks.

Real clock synthesis

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verificitar KES 06 Coyn Hesis PNR

Syntax: create_clock

create_clock
 [-period period_value]
 [-name clock_name]
 [source_objects]

-period period_value
 The period of the clock waveform in library time units.
 default unit is ns

-name clock_name

Specifies the name of the clock being created.

source_objects

Specifies a list of pins or ports on which to apply this clock.

Example: create_clock clk -period 20 -name clk

Worst case clock skew needs to be defined

- technology and design dependent
- not easy to determine
- Around 2% of clock period

Syntax:
set_clock_uncertainty 1 name_of_your_clock

also

set_fix_hold name_of_your_clock

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verification

Synthesis Flow

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verification

Synthesis Constraints

High-speed or Low-area?

User-controlled constrainst define the goal

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verification

Constraining Input Paths

Constraining Input Paths

set_input_delay -max 5.6 -clock clk [get_ports A]

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verification

Constraining Output Paths

Need to Specify propagation delay of external logic that is driven by your logic

SYNTAX

set_output_delay -max 4 -clock clk [get_ports B]

This command could be useful in the project part if you need to connect several dersigns.

Deepak Dasalukunte, Ei I, Li H, Digital C project and Verification

Constraining Area

Area is expensive and needs to be constrained

set_max_area

sets the max_area attribute to a specified value on the current design. The max_area attribute represents the target area of the design and is used by the compile command to calculate area cost of the design.

SYNTAX

set_max_area area_value

- e.g. set_max_area 0
- Synthesis tool prioritizes total negative slack over area.
- A design that does not met timing will not work.
- Compile does not create new delay violations or worsen existing delay violations on a path that has negative delay slack in order to improve area.

For a high-speed circuit do not set any area constraint and specify a high clock frequency.

For an area optimized circuit set area to 0 and specify a low clock frequency.

Two synthesis runs are necessary.

Highest speed

Smallest area.

Synthesis Flow

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verification

Synthesis and Optimization

- The command *compile* performs logic and gate-level synthesis and optimization on the current design.
- Optimization is controlled by user-specified constraints.
 - to obtain smallest possible circuit
 - or fastest design

•

•

•

•

- or any other design requirement.
- The constraints describe
 - goals for the optimization process (area).
 - try to make specified outputs arrive by a specified time.
- Values for components' area and speed used during synthesis and optimization are obtained from user-specified libraries.

compile [-map_effort low | medium | high]

-map_effort

Relative amount of CPU time spent during mapping phase of compile. Default : Medium effort.

Example: compile -map_effort high

More switches for compile are available but not scope of this presentation!!

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verification

Synthesis Flow

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verification

Netlist and Timing

• All possible violations need to be checked by executing:

report_constraint -all_violators

• Other commands to check design:

report_design

report_area -hierarchy

report_timing -max_paths no_of_paths

- Therafter, a netlist can be written in several formats
 - VHDL

•

- Verilog
- db or ddc (Synopsys specific format)

Netlist and Timing

 The names of nets, buses etc., need to be changed to the desired netlist format

change_names -rules [vhdl | verilog] -hierarchy

• A netlist is generated with

write -format [vhdl | verilog] -hierarchy
 -output ./netlists/your_design.v

 A file that contains timing information for gate-level simulation is generated

Getting Started

Change to the folder where you want to do synthesis, and execute *inittde dicp13* (more info @: <u>www.eit.lth.se/cadsys/far130lnx.html</u>)

initializes the environment and copies some setup files (if required)
 For synthesis .synopsys_dc.setup is the initialization file

· CAD tools initialization script creates several directories (retaining directory structure STRONGLY recommended)

vhdl (copy your VHDL design files into this directory)
netlists (save your netlist, sdf and sdc files in this directory)
WORK (for Synopsys)
work (for ModelSim)

SOC

- Execute design_vision in the same terminal as inittde was executed and graphical user interface of the synthesis tool pops-up.
- A tcl script is available in "comp.dv" file for the dummy design, go through it !!

DesignCompiler GUI

	_	Desi	an Vision – To	oLevel.1 – ⊺Cons	ole.11—— ORSdei	t		
	<u>File E</u> dit <u>V</u> iew <u>S</u> elect <u>H</u>	ighlight L <u>i</u> st <u>H</u> ierarchy <u>D</u> esign <u>/</u>	<u>A</u> ttributes S <u>c</u> hematic	<u>T</u> iming Test <u>W</u> indow	Help			
	QRSdet							_
	Yme Hier Logical Hierarchy ⊡-D==> QRSdet …Dalert_buf …Deat_buff …Dclk2 …Dt_buf …Dthresh_buff …Dalert …Dthresh_buff …Dalert …Dthresh_buff	Cells (Hierarchical) Cell Name Ref Name Dalert_buf FF_1bit_3 Dbeat_buff FF_1bit_2 Dclk2 clk_gate Dt_buf FF_N15_1 Dthresh_buff FF_N15_0 Dalert zcr_N8_diff_del Dwit filter actwit filter act N	Cell Path alert_buf beat_buff clk2 t_buf thresh_buff alert wtt filter ac	hematic.1 QRSdet				
Circuit hierarc y	DRatiotest ⊕ DRatiotest ⊕ Dsleepy_wit ⊕ Dsleepy_GLRT ⊕ Dthresh_find	Wit_inter_act Wit_inter_act_10 DRatiotest GLRT_act_N10 Dsleepy_wit_f wit_filter_sleep. Dsleepy_GLRT GLRT_sleep_N. Dthresh_find threshold_N15_	Ratiotest sleepy_wlt_ sleepy_GLR thresh_find					
bistory	Pe > QRSdet ▲ 6 read_file -formation 7 get_designs Edit Edit Log History	at verilog {/space/jrs/SoCEnc	/run_5/LL/final.e	nc.dat/QRSdet.v}				Options: V
nistory	design_vision-xg-t>							
or <i>log</i>	Ready						Selected:	
2	shel Ch I sci	oose <i>History</i> Tipt	and sel	ect <i>Save</i>	e Conten	ts As…to	create	a synt

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verification

DesignCompiler GUI

- Check log window after a command was executed to verify error-free execution of a command
 - log is also automatically saved in a log file.
- To learn more about DC commands go to
 Help -> Man pages
 - has alphabetical list of commands
 - each command has usage examples

 also messages: to take appropriate action for WARNINGs and ERRORs

Synthesis Script

In DesignVision choose *History* tab and click on *Save Contents As ...*

- Choose a name for the script file, e.g, **synth.tcl**
- Open the generated script in an editor (emacs) and remove double and false intructions.
 - Restart DesignVision and execute the script file, i.e., **source synth.tcl** if you saved your script as synth.tcl
 - Verify the script by checking the synthesis
 - Check the log for inferred latches.

•

•

- Go through the warnings and make sure they can be waived