Mini-MIPS project (Steffen Malkowsky)

- 32-bit RISC with a subset of MIPS instructions.
- Grading:
 - Grade 3: Fully verified pipelined Mini-MIPS.
 - Grade 4 : Xilinx Ethernet I/O
 - Grade 5 : Extra functionality (accelerator/extended instruction set
 - Alternative for Grade 4/5
 - Own ideas from you!
- Prerequisite course:
 - EITF20 Computer Architecture

RISCV SoC: Hardware and Software Integration(Hemanth Prabhu)

- Primary tasks for grade 5, is to integrate an existing synchronization module:
 - Implement AXI and APB interfaces for sync module (grade 3)
 - Integrate module into PULPino SoC (grade 4)
 - Verify that the processor core (RISCV) is able to access sync module
 - Implement/Integrate DMA (grade 5)
- Will require both hardware and software development skills! (select one group based on assignment report quality)

Reordering Circuit for Pipelined FFT(Mojtaba Mahdavi)

Reordering Circuit

1

Example:			
nput/output of reordering circuit			
for 16-point FFT			
Input	Input Index	Output	Output
			index
X0	0000	XO	0000
X8	1000	X1	0001
X4	0100	X2	0010
X12	1100	Х3	0011
X2	0010	X4	0100
X10	1010	X5	0101
X6	0110	X6	0110
X14	1110	X7	0111
X1	0001	X8	1000
X9	1001	Х9	1001
X5	0101	X10	1010
X13	1101	X11	1011
Х3	0011	X12	1100
X11	1011	X13	1101
X7	0111	X14	1110
X15	1111	X15	1111

- There are different methods for reordering from the Bit-Reversed Order to Normal Order.
 - Implement an efficient reordering circuit for:
 - 2048-point FFT
 - One or two input per clock
 - FFT implementation is **NOT** required
 - Just implementation of a reordering circuit is needed

IC PROJECT -CRYPTOGRAPHY

IMPLEMENTATION OF A STREAM CIPHER

AND RELATED ATTACK

JONATHAN SÖNNERUP,

JONATHAN.SONNERUP@EIT.LTH.SE

GOAL

- The task is to implement a part of a generic state-of-theart attack against cryptographic functions, focusing on the stream cipher Grain 128a:
 - 1. Implement Grain 128a with authentication (3).
 - 2. Parallelize Grain up to a factor 32 efficiently (4).
 - 3. Implement a part of an attack against Grain, known as the Maximum Degree Monomial test (5).

Key stream (z)

Grain 128a w/ auth

Message (m)

Tag (t)

