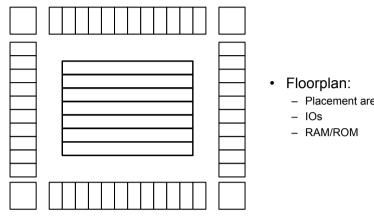

Outline

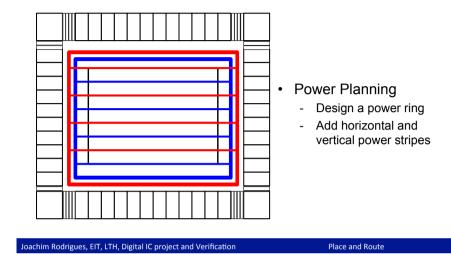
- Backend ASIC Design flow (Physical Design)
 - General steps
- Input files
- Floorplanning
- Placement
- ClockTree-synthesis
- Routing

Joachim Rodrigues, EIT, LTH, Digital IC project and Verification

Place and Route

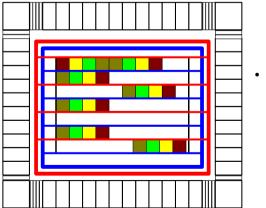

Typical Backend Design Flow

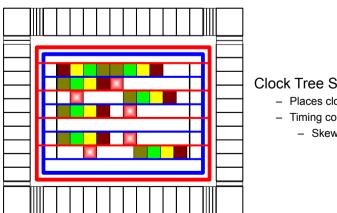
SoC Encounter Flow


SoC Encounter Flow

- Placement area

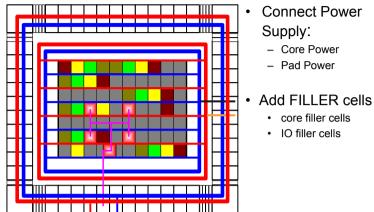
Place and Route


SoC Encounter Flow

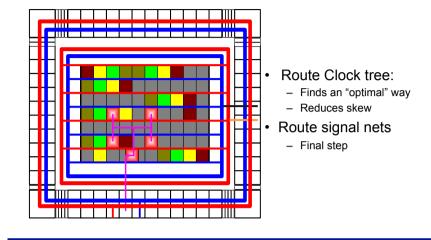

Joachim Rodrigues, EIT, LTH, Digital IC project and Verification

SoC Encounter Flow

SoC Encounter Flow


- Place Cells:
 - Place all the standard cells into the rows

Clock Tree Synthesis:


- Places clock buffers
- Timing constraints - Skew etc

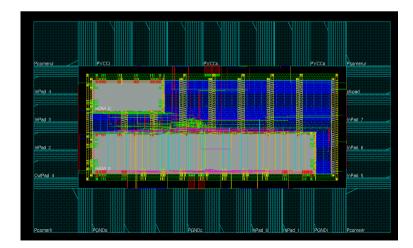
SoC Encounter Flow

Connect Power

SoC Encounter Flow

Joachim Rodrigues, EIT, LTH, Digital IC project and Verification

oachim Rodrigues, EIT, LTH, Digital IC project and Verification


Place and Route

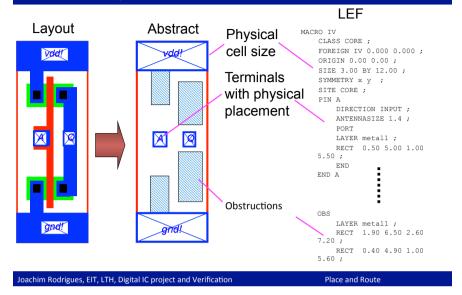
Place and Route

Joachim Rodrigues, EIT, LTH, Digital IC project and Verification

Place and Route

Demo Layout

Technology Description Files


LEF: Library Exchange Format

- Technology: Design rules, Capacitance, Resistance, Antenna factor, Vias

> header.lef

- Cells & pads: Size, Class, Placement, Pin Information, Obstructions.
 - ➤ Standard cell.lef
 - ➤ IO.lef

LEF-Example: Inverter

Design Description Files

Enc: Encounter Format

Netlist, Layout

DEF: Design Exchange Format (not used in our flow.
 Netlist, Lavout

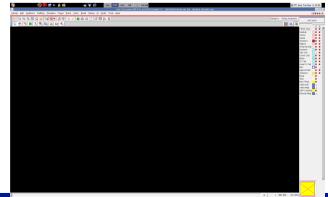
Verilog

- Netlist, generated from synthesis tool

Joachim Rodrigues, EIT, LTH, Digital IC project and Verification

Place and Route

Required Data for PnR (Faraday 130nm)

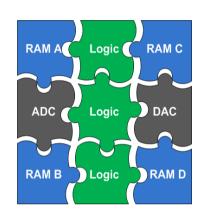

- LEF: Library Exchange Format
 - header.lef
 - standardCell.lef : Cell Library
 - IO.lef : Pad Library
 - memory.lef : custom
- lib/tlf: libraries that contain timing information
- sdc: Synopsys Design Constraint (generated during synthesis). Optional
- Memory: memory.lib
- Design (netlist): your_design.v

Starting the SoC Encounter

inittde dig130x17

encounter

Remember to maintain the directory hierarchy.

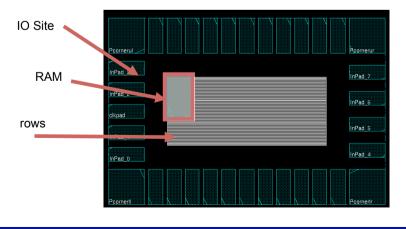

Design Import

<u>Design -> Import Design</u>

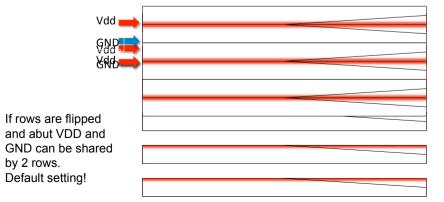
/usr/local-eit/cad2/far130/syn2010/

I	- Design Import	·
	Basic Advanced	
Needs to be	Vorlog Notlist:	
specified	Top Cell: I Auto Assign 🕹 By User: MEDIANFILTER_N8	
	Timing Libraries:	
	Max Timing Libraries: foc0h_a33_133_generic_io_wc.lib fsc0h_d_sc_wc.lib	
	Min Timing Libraries: foc0h_a33_t33_generic_io_bc.lib foc0l_a33_t33_generic_io_bc.lib	
	Common Timing Libraries:	
		_
Will be	LEF Files: header6m21_V55.lef fsc0h_d_sc.lef foc0h_a33_t33_generic_io.lef SYUD130_64X8X1CM2.lef	
	Timing Constraint File: medfilt.sdc	
provided	IO Assignment File: MedFilt.io	
	QK Seve Losd Cancel Help	
chim Rodrigues, EIT, LT	H, Digital IC project and Verification Place and Ro	ute

Floorplan



- A starting floorplan is created (required area is estimated by the tool)
- Global and detailed routing grids are created
- The core rows are created
- Sites for IOs are created
 - IO and block to core distance is defined by the user


Joachim Rodrigues, EIT, LTH, Digital IC project and Verification

Place and Route

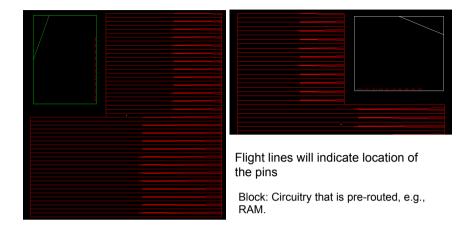
Floorplanning

Core Rows

Floorplan Setup

<u>Floorplan -> Specify Floorplan</u>

	— Specify Floorplan 🔹 🗖
	Basic Advanced
	Design Dimensions
	Specify By: Size Die/IO/Core Coordinates
	◆ Core Size by: ◆ Aspect Ratio: Ratio (H/W): 0.4364714€
	Core Utilization: 0.089606
Core utilization	Cell Utilization: 0.0087
	Dimension: Width: 674.5
	Height: 294.4
	Die Size by: Width: 1178.5
	Height: 798.4
	Core Margins by: 🔶 Core to IO Boundary
	🔶 Core to Die Boundary
IO to core distance 🛑	to Left: 100.0 Core to Top: 100.0
	Core to Right: 100.0 Core to Bottom: 100.0
	Die Size Calculation Use: 💊 Max IO Height 🔶 Min IO Height
	Floorplan Origin at: 🔶 Lower Left Corner 🕹 Center
	Unit: Micron
	OK <u>A</u> pply <u>C</u> ancel <u>H</u> elp

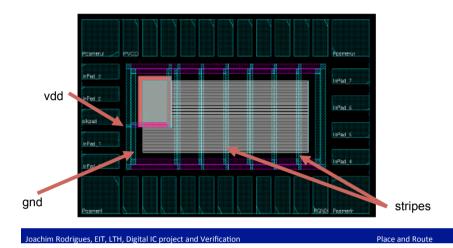

IO Placement

- Specify location/orientation of pads
 - Input, output
 - core-power, pad-power
- Recommendation:
 - Put core power supply on top or botton
 - Use gaps in the pad frame for additional power supply.
 - !No CORE power supply at the corners!
 - The more supplies the better

achim Rodrigues, EIT, LTH, Digital IC project and Verification

Place and Route

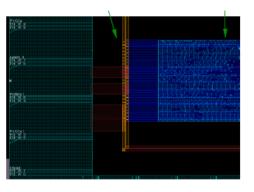
Block Placement


Joachim Rodrigues, EIT, LTH, Digital IC project and Verification

Place and Route

Power Rings

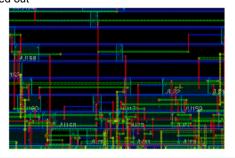
- Power paths are planned and modified before routing
- Creation of power rings that surround all blocks and core.
- Creation of stripes over rows
- Connects rings, stripes and pads


Power Rings cont'd

Connecting Power (sRoute)

between

- IO power pins within IO rows
- CORE ring wires and the IO power pins
- stripes and core rings
- block power pins and the CORE ring wires

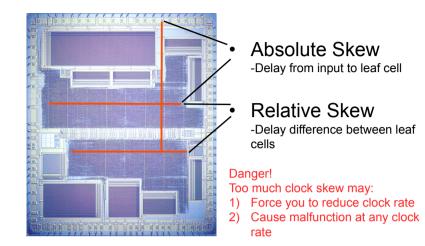

Route-> Special Route

Joachim Rodrigues, EIT, LTH, Digital IC project and Verification

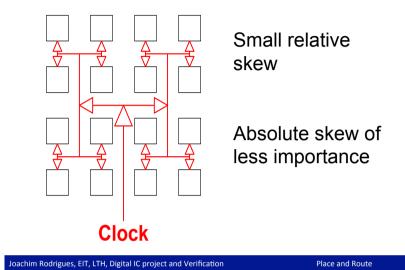
Place and Route

Cell Placement

- · Initial cell placement
- Moves, swaps changes orientation of cells to minimize required wire length
- · Optimizes for wire length and net crossings
- A post CTS optimization may be carried out to optimize the design



Place -> Standard Cells


Clock Tree Synthesis

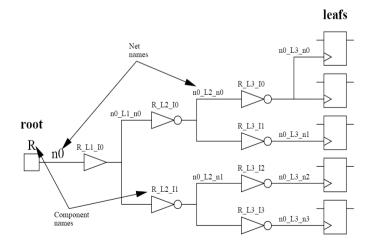
- Clockpad and output need to defined in a specification file.
 - clockpad/O
- Clock tree is synthesized and routed with highest priority to minimize clock skew.

Clock Skew

Distributed Buffers in H-tree

CTS commands

Joachim Rodrigues, EIT, LTH, Digital IC project and Verification


create_clock -period value -name clk_name
 -add [get ports clk]

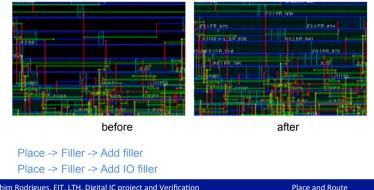
• Generate Clock tree specification createClockTreeSpec -output file name.ctstch

-routeClknet -buffer buffer_list

Specify CTS file and synthesize clock tree.
 specifyClockTree -clkfile file_name.ctstch
 clockDesign -specFile file_name.ctstch -clk clk_name
 deleteTrialRoute

Synthesized Clock tree

Clock buffers are placed in the core row gaps


Place and Route

Place and Route

Core filler cell

Core filler cells ensure the continuity of power/ground rails and N+/P+ wells in the row.

Filler cells will close any gap it is important to perform CTS before filler cell placement.

loachim Rodrigues, EIT, LTH, Digital IC project and Verification

Verification and Tapeout

Verification (in SoCEnc)

- Connectivity, Antenna

Export

- Verilog (netlist) Post-layout simulation
- sdf (timina)
- GDS II + tapeout

Verify

pachim Rodrigues, EIT, LTH, Digital IC project and Verification

Place and Route

Signal Routing

- Signal routing
 - Connects cells according to netlist
 - Metal wires are connected over several layers
- Routing time is strongly dependent on the design complexity

Route -> Nano Route

m Rodrigues, EIT, LTH, Digital IC project and Verificatio

Place and Route

Routing Script

- Each command is automatically written in a script file encounter.cmd
- Script needs to be trimmed (remove unnecessary commands)
- Easy to change parameters
- Can be reused with modifications
- Time to do PnR iteratively is reduced
- Serves as documentation and makes it possible to repeat the flow

pachim Rodrigues, EIT, LTH, Digital IC project and Verification

What's next?

- Continue in the lab with Assignment 1
 - The design needs to be taken through
 - Simulation, including post-synthesis
 - Synthesis
 - Place and Route

Joachim Rodrigues, EIT, LTH, Digital IC project and Verification

Place and Route