

Objective of the Presentation

- Introduce basic synthesis
- Guide that can be used to create a basic synthesis flow
 - Steps
 - Actual commands
- Getting familiar with the synthesis environment
- Your first ASIC synthesis script

Lund University / Dept. of Electrical and Information Technology / January 29, 2017 - 3

LUND UNIVERSITY

Objective of the Presentation

- Synthesis
- Basic synthesis flow
- Synopsys DesignCompiler
- Synthesis script

Lund University / Dept. of Electrical and Information Technology / January 29, 2017 - 2

LUND UNIVERSITY What is Synthesis?

- A process which combines two or more pre-existing elements resulting in the formation of something new.
- Synthesis links the conceptual description of the logic functions needed for the design to their actual physical architecture elements in the underlying device.

What is Synthesis?

LUND UNIVERSITY Synthesis Tool -Design Compiler (DC)

- Common tool provided by Synopsys Well-known in industry and academia
- Online support: https://solvnet.synopsys.com/
- Command help in Synopsys-DC GUI.
- Graphical mode
 - DesignVision
- Shell mode
 - dc_shell

Lund University / Dept. of Electrical and Information Technology / January 29, 2017 - 6

Libraries

- Vendor delivers technology libraries as ASCII file (*.lib_)
- describes parameters and rules for a particular technology(**130nm**,90nm, **65nm**...).
- Every process consists of logic cells that has different functionality.
- full adder, multiplier, flip-flop, XOR, NAND etc
- Compiled for Synopsys DC usage (*.db)
- Various libraries, e.g., low-leakage (LL) or high-speed (HS) are usually available.

Libraries

Target library is used by DC to build the circuit

- DC chooses gates from libraries
- Gate timing information is included in libraries Defined in .synopsys_dc.setup
- Copied into the working directory when init scripts are run. specifies the libraries being used and other configurations.
- *.lib information for the memory needs to be read by DC.
- SYNTAX: read_lib memoryX.lib
 SYNTAX: write_lib memoryX (writes the memory in .db format)
- If *.db is already available, include them in the *link_library* and *target_library*

Lund University / Dept. of Electrical and Information Technology / January 29, 2017 - 9

LUND UNIVERSITY

Syntax- Analyze

analyze

[-library library_name]

[-format vhdl | verilog | sverilog] file_list

-library library_name

Maps the work library to *library_name*.

By default, analyze stores all output in the work library. -format vhdl | verilog | sverilog

Specifies the format of the files that are to be analyzed; file_list

Specifies a list of files to be analyzed. When specifying more than one file, enclose the files in braces: { }. Example:

analyze -format vhdl -lib WORK {../vhdl/your_design.vhd}

Synthesis Flow

Read Design Prepare

- DC reads both RTL designs and gate-level netlist.
- DC reads design files with **analyze** and **elaborate** Commands
 - **analyze**: analyzes HDL files and stores the intermediate format for the HDL description in the specified library
 - **elaborate**: Builds a design from the intermediate format, a VHDL entity and architecture
- Every instance becomes unique.

Lund University / Dept. of Electrical and Information Technology / January 29, 2017 - 10

UND UNIVERSITY

Syntax- Elaborate

elaborate design_name

[-library library_name | -work library_name]
[-architecture arch_name]
[-update]

design_name

Specifies the name of the. Can be a Verilog module, a VHDL entity, or a VHDL configuration.

-library library_name

Specifies the library name that work is to be mapped to.

By **Default**: elaborate looks in the *work* library for the design to be built. -architecture *arch* name

Specifies the name of the architecture, .e.g., behavioral, structural, rhubarb, ... Example:

elaborate fir -lib WORK -arch structural

Clock skew

Worst case clock skew needs to be defined

- technology and design dependent
- not easy to determine
- Around 2% of clock period

Syntax: set_clock_uncertainty 1 name_of_your_clock

also

set_fix_hold name_of_your_clock

Syntax- create clock

create_clock

[-period period_value] [-name clock_name]

[source_objects]

-period period_value

The period of the clock waveform in library time units.

default unit is ns

-name clock_name

Specifies the name of the clock being created.

source_objects

Specifies a list of pins or ports on which to apply this clock.

Example: create_clock clk -period 20 -name clk

Lund University / Dept. of Electrical and Information Technology / January 29, 2017 - 14

Lund University / Dept. of Electrical and Information Technology / January 29, 2017 - 15

Constraining Input Paths

LUND UNIVERSITY Constraining Output Paths

Need to Specify propagation delay of external logic that is driven by your logic

set_output_delay _max 4 _clock clk [get_ports B]

This command could be useful in the project part if you need to connect several designs.

Constraining Input Paths

set_input_delay -max 5.6 -clock clk [get_ports A]

Lund University / Dept. of Electrical and Information Technology / January 29, 2017 - 18

Constraining Area

Area is expensive and needs to be constrained

set_max_area

sets the max_area attribute to a specified value on the current design. The max_area attribute represents the target area of the design and is used by the compile command to calculate area cost of the design.

SYNTAX

set_max_area area_value e.g. set_max_area 0

- Synthesis tool prioritizes total negative slack over area.
- A design that does not meet timing will not work.
- Compile does not create new delay violations or worsen existing delay violations on a path that has negative delay slack in order to improve area.

Area vs Speed

- For a high-speed circuit do not set any area constraint **but** specify a high clock frequency.
- For an area optimized circuit set area to 0 and specify a low clock frequency.
- Assignment:
 - Two synthesis runs are necessary.
 - Highest speed
 - Smallest area.

Lund University / Dept. of Electrical and Information Technology / January 29, 2017 - 21

LUND UNIVERSITY

Syntax: compile

compile [-map_effort low | medium | high] -map_effort

Relative amount of CPU time spent during mapping phase of compile. Default : Medium effort.

Example: compile -map_effort high

More switches for compile are available but not scope of this presentation!!

LI S	ynthesis and Optimization	Read Design Prepare
•	The command <i>compile</i> performs logic and gate-level synthesis and optimization on the current design.	Specify Clock
•	Optimization is controlled by user-specified constraints • to obtain smallest possible circuit • or factorst design	Specify Constraints
	or any other design requirement.	Synthesis
•	 The constraints describe goals for the optimization process (area). try to make specified outputs arrive by a specified time. 	
•	Values for components' area and speed used during	

 Values for components' area and speed used during synthesis and optimization are obtained from userspecified libraries.

Lund University / Dept. of Electrical and Information Technology / January 29, 2017 - 22

Netlist and Timing Information

All possible violations need to be checked by executing: report_constraint -all_violators

Other commands to check design:

report_design
report_area -hierarchy report_timing -max_paths no_of_paths

Thereafter, a netlist can be written in several formats

- VHDL
- Verilog
- db or ddc (Synopsys specific format)

Lund University / Dept. of Electrical and Information Technology / January 29, 2017 - 24

Netlist and Timing Information

The names of nets, buses etc., need to be changed to the desired netlist format

change_names -rules [vhdl | verilog] -hierarchy

A netlist is generated with write -format [vhdl | verilog] -hierarchy -output ./netlists/your_design.v

A file that contains timing information for gate-level simulation is generated **write_sdf ./netlists/your_design.sdf** (.sdf required for post-synthesis simulation)

write_sdc ./netlists/your_design.sdc

(.sdc required for Place and Route)

Lund University / Dept. of Electrical and Information Technology / January 29, 2017 - 25

LUND UNIVERSITY

Getting Started

Change to the folder where you want to do synthesis, and execute *inittde* dig130x17 initializes the environment and copies some setup files (if required)

For synthesis **.synopsys_dc.setup** is the initialization file CAD tools initialization script creates several directories (retaining directory structure STRONGLY recommended)

- vhdl (copy your VHDL design files into this directory)
- netlists (save your netlist, sdf and sdc files in this directory)
- WORK (for Synopsys)
- work (for ModelSim)
- soc

Execute *design_vision* in the same terminal as inittde was executed and graphical user interface of the synthesis tool pops-up.

A tcl script is available in "comp.dv" file for the dummy design, go through it !!

Lund University / Dept. of Electrical and Information Technology / January 29, 2017 - 26