Contents - This document presents the project which will be offered in the digital track of ETIN35 - Please get an idea of the different projects and contact the project supervisor for more information - By March 13th you need to send an email to Joachim Rodrigues where you state: - 1st preference - 2nd preference - Project partner ## **Projects** - Channel Estimation-Steffen Malkowsky - Successive Interference Cancellation -Steffen Malkowsky - QR Decomposition- Hemanth Prabhu - RISC processor- Michal Stala ## **System View I** $$y_{100\times 1} = H_{100\times 10} * s_{10\times 1} + n_{100\times 1}$$ ## **System View II** # Channel Estimation (one user) I - Steffen Malkowsky 1 sample per input valid, every 10th subcarrier Pilot symbol Overall 1200 subcarriers (120 estimates, interpolate rest) Model input valid as random Perform least square, i.e., divide by pilot Store estimates in memories # Channel Estimation (one user) II - Steffen Malkowsky #### Grade 3: On-the-fly linear interpolation between the estimates ### Grade 4/5: Compare more advanced on-the-fly interpolation, e.g. second order, cubic spline or Lagrangian interpolation Optimize throughput Do something better than Least-squares # Successive Interference Cancellation I - Steffen Malkowsky Assume Q, R and Hest matrices are given at input (pre-buffer if necessary) Vector y is received Build pseudoinverse of H and calculate first symbol Subtract symbol from received values and calculate next symbol 10 users Hard detection # **Successive Interference Cancellation II- Steffen Malkowsky** #### Grade (4)/5: Build Matlab model for SIC (with help) Generate input values for Q, R and H in Matlab Implement in VHDL Optimize throughput ### **QR** Decomposition ### - Hemanth Prabhu - In this project the students will design a QR-decomposition accelerator. - QRD is a well known linear algebra method, mainly used for solving linear equations. - It is extensively used in signal processing and communication systems. $$A = QR, \ Q = (q_1 \dots q_n), \ R = \begin{pmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ 0 & r_{22} & & r_{2n} \\ \vdots & & \ddots & \vdots \\ 0 & & 0 & r_{nn} \end{pmatrix}$$ ## **QR** Decomposition ### - Hemanth Prabhu - Student need to perform QRD using "Given's Rotation". - Use "CORDIC" processing elements to perform arithmetic's. - Systolic Array - Highly parallel architecture - Easy implementation ## **QR** Decomposition ### - Hemanth Prabhu #### • Grade 4: Floating point model in Matlab. Fixed point model in CatapultC or C++ (optional) Cordic Processing elements for Given's Rotation #### • Grade 5 : Fully working systolic array based Given's Rotation. Area/power comparison with state-of-art implementation. # Mini-MIPS project (Michal Stala) - 32-bit RISC with a subset of MIPS instructions. - Grade 3: Fully verified pipelined Mini-MIPS. - Alt 1 - » Grade 4 : Xilinx Ethernet I/O - » Grade 5: Extra functionality (accelerator or extended instruction set) - Alt 2 - » Grade 4/5 : Viterbi decoder in Catapult - Alt 3 - » Grade 4/5 : open for suggestions (Multicore?) - Prerequisite course: - EITF35 Introduction to Structured VLSI Design - EITF20 Computer Architecture ## Mandatory tasks - Task 1: behavior modeling - Task 2: synthesizable pipelined implementation - Task 3: P&R in 65nm CMOS - Task 4: Verification in FPGA