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1. Introduction 

The Low-Noise Amplifier (LNA) is typically the first active stage in a receiver. Its job is to suppress the 

subsequent stages’ noise contribution by adding as much gain as possible, while adding as little of its 

own noise as possible. It should also provide good matching to the off-chip environment. 

 

Figure 1: The inductively degenerated LNA. 

In this lab, we will design and simulate a differential inductively degenerated common-source 

amplifier as our LNA, Figure 1. This is one of the most popular LNA architectures due to its excellent 

noise performance. The frequency of operation will be 5 GHz. 

The LNA has a lot of different parameters to tweak, and it can be hard to know where to start. A 

common approach is to set an upper limit for the power consumption and try to optimize for that. In 

this lab, we will limit the power consumption to 6 mW. Since VDD = 1.2V, this means that ISS = 5 mA, 

i.e. 2.5 mA per branch. 

One of the important tasks for the LNA is to provide an impedance match to the outside 

environment, i.e., the antenna, to enable maximum power transfer and avoid reflections. The 



antenna impedance is typically purely resistive, meaning that the input impedance should also be 

purely resistive. The input impedance of this LNA is: 

𝑍𝑖𝑛 =
1

𝑠𝐶𝑔𝑠
+ 𝑠(𝐿𝑆 + 𝐿𝐺) +  

𝑔𝑚𝐿𝑆

𝐶𝑔𝑠
≈

1

𝑠𝐶𝑔𝑠
+ 𝑠(𝐿𝑆 + 𝐿𝐺) +  𝜔𝑇𝐿𝑆 

Interestingly, the impedance has a resistive part that depends on the degeneration inductor and the 

transition frequency of the input transistors M1 and M2. To make the impedance purely resistive, we 

need the 1/𝑠𝐶𝑔𝑠 and the 𝑠(𝐿𝑆 + 𝐿𝐺) terms to cancel at our desired frequency 𝜔0, while 𝜔𝑇𝐿𝑆 

matches the antenna resistance. In other words, we need 𝜔𝑇𝐿𝑆 = 𝑅𝑆, where 𝑅𝑆 is the resistance of 

the antenna, and 
1

𝐶𝑔𝑠(𝐿𝑆+𝐿𝐺)
= 𝜔0

2. 

Another important aspect is of course the noise. The most critical sources of noise are M1 and M2, 

which will cause both thermal drain noise and induced gate noise. A useful parameter when 

analyzing the noise is the quality factor Q of the input impedance, defined as: 

𝑄 =
1

(𝑅𝑆 + 𝑔𝑚
𝐿𝑆
𝐶𝑔𝑠

)𝜔0𝐶𝑔𝑠

=
1

2𝑅𝑆𝜔0𝐶𝑔𝑠
 

As it turns out, higher Q leads to lower drain noise, but higher induced noise. In the course book, Lee 

uses this fact to find an optimum Q which causes the lowest noise figure. It is shown that this Q is a 

constant, which in turn leads to an equation for the optimum transistor width (eq. (12.58) in the 

book. However, his approach does not consider other aspects of the LNA, such as linearity, and does 

not perform very well for low bias currents. In addition to this, it typically leads to very large 

inductors. Another approach1 is to add an extra capacitance Cex in parallel with Cgs of the input 

transistors, so that the total capacitance between gate and source is 𝐶𝑡 = 𝐶𝑒𝑥 + 𝐶𝑔𝑠. The quality 

factor then becomes: 

𝑄 =
1

2𝑅𝑆𝜔0𝐶𝑡
 

This gives the designer an extra degree of freedom by detaching the width of the transistor to the Q, 

making Q a variable that can be set to fulfill the specifications of the design. After a quite lengthy 

derivation it is shown that the optimum width will be: 

𝑊𝑜𝑝𝑡 =
𝐴𝑏

2𝑄2
√

5

6

3

4𝜔0𝑅𝑆𝐶𝑜𝑥𝐿
, 

where 𝐴𝑏 is a constant called bulk charge factor (typically around 1.2-1.4), 𝐶𝑜𝑥 is the gate oxide 

capacitance, and 𝐿 the length of the transistor (should be as small as possible, i.e. 65 nm in our case). 

The ratio between Cgs and Ct is then shown to be: 

𝑃𝑜𝑝𝑡 =
𝐶𝑔𝑠

𝐶𝑡
=

𝐴𝑏

2𝑄
√

5

6
 

Setting Q = 3 (a quite typical value), Ab = 1.4, Cox = 14 fF/µm2, L = 0.06 μm, and RS = 50Ω gives: 

 
1 P. Andreani and H. Sjöland, "Noise optimization of an inductively degenerated CMOS low noise amplifier," in 
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Sept. 2001 



𝑊 = 47μm 

𝑃 = 0.21 ⇒  𝐶𝑒𝑥 = 3.76𝐶𝑔𝑠 

A DC simulation shows that, for a transistor with the dimension W/L = 47µm/0.06μm and IDS = 

2.5mA, Cgs = 14fF (intrinsic capacitance) and Cgs,ol = 14fF (overlap capacitance). Cgs,ol will be part of 

Cex, so the capacitance we need to add will be: 𝐶𝑒𝑥
′ = 𝐶𝑒𝑥 − 𝐶𝑔𝑠,𝑜𝑙 = 3.76𝐶𝑔𝑠 − 𝐶𝑔𝑠,𝑜𝑙 = 38 fF. 

We can now return to impedance matching. Because of the added capacitance, we must slightly 

modify our expression from before. The real part of the impedance is now 
𝑔𝑚𝐿𝑆

𝐶𝑡
 and to cancel the 

imaginary part we need 
1

𝐶𝑡(𝐿𝑆+𝐿𝐺)
= 𝜔0

2. The above-mentioned DC simulation showed gm = 23 mS. 

For RS = 50 Ω, this gives: 

𝐿𝑆 = 𝑅𝑆

𝐶𝑡

𝑔𝑚
= 𝑅𝑆

𝐶𝑒𝑥 + 𝐶𝑔𝑠

𝑔𝑚
≈ 140 pH 

To make the imaginary part 0 we now need: 

𝐿𝐺 =
1

𝜔0
2𝐶𝑡

− 𝐿𝑆 ≈ 15 nH 

For the cascode devices, we use the same W/L ratio, but double both the width and length. 

Otherwise, we can get an unstable amplifier due to short-channel effects. 

The only unknown values now are for the resonance tank. Here, we need to make some guesses. 

Ctank will be the capacitance from the next stage (typically a mixer), plus the parasitic capacitance 

from the inductor, plus any kind of capacitance that we choose to explicitly add. Let’s guess that this 

will be roughly 200 fF. This gives an inductor value of: 

𝐿𝑡𝑎𝑛𝑘 =
1

𝜔𝑜
2𝐶𝑡𝑎𝑛𝑘

= 5.1 nH 

If we don’t explicitly add a resistor at the output, Rtank will only be due to the finite Q value of Ltank. A 

typical value for Q at these frequencies is 10, which gives a Rtank of: 

𝑅𝑡𝑎𝑛𝑘 = 𝜔0𝐿𝑡𝑎𝑛𝑘 = 1.6 kΩ 

An AC simulation shows that Ltank = 3.8 nH causes resonance at 5 GHz (this lower value is because of 

the added Cgd and Cdb capacitances from M3 and M4), which in turn gives Rtank = 1.2kΩ. 

The initial values to be used in the simulations are summarized below: 

W 47 µm 

L 60 nm 

Wcascode 2W 

Lcascode 2L 

𝐶𝑒𝑥
′  38 fF 

LS 156 pH 

LG 14.3 nH 

Ltank 3.8 nH 

Ctank 200 fF 

Rtank 1.2 kΩ 

Iss 5 mA 



2. Setting up the testbench 

 

Figure 2: The LNA schematic in Cadence 

Firstly, create a library called RFIC_Labs and attach it to “cmos065”. Then, create a schematic called 

LNA according to Figure 2. Use ideal passive components and the nlvtlp transistor. Instead of giving 

exact values to all the components, use variables. Create a symbol of the LNA (“Create” -> “Cellview” 

-> “From Cellview”). Next, create a new cellview called LNA_tb and place components according to 

Figure 3. The components you most likely are unfamiliar with are “port”, “ideal_balun” and “vcvs” 

(voltage-controlled voltage source), all of which can be found in analogLib. Use all the default values, 

except change the resistances in the ports to 100 Ω. We do this because we have calculated for an 

input impedance of 50 Ω of each input, thus the differential input resistance should be 100 Ω.2 The 

output port does not really do anything, but it is needed in some simulations. However, we do not 

want its resistance to load the output, which would cause the gain to degrade. Thus, we use a vcvs 

to isolate the port from the output. 

Launch ADE L, import all variables (“Variables” -> “Copy from cellview”), and give them the values 

from the Introduction and set Vbias to 600 mV. Then, go to “Analyses” -> “Choose” -> “DC” -> tick 

“Save DC operating point” -> “OK”. Bring up the LNA in a new tab by selecting the LNA in the LNA_tb, 

press “e”, select “New tab” and “Edit”, and click “OK”. Go back to ADE L, select “Results” -> “Print” -> 

“DC operating point” and select one of the input transistors and check that everything seems 

reasonable. Another very useful thing you can do after a DC simulation is to go to ADE and select 

“Results” -> “Annotate” -> “DC Node Voltages”. This will print all the DC voltages in the schematic, 

making it very easy to spot if something has gone wrong. If everything looks OK, proceed to the next 

step. 

 
2 This is not always the case. Sometimes we design the differential input resistance to be 50Ω, i.e. 25Ω at each 
input. 



 

Figure 3: The LNA testbench. 

 

 

3. Simulating the input match 

Now we will see how good our input match is, i.e. how close our input impedance is to 50 Ω (or 100 

Ω differentially). The easiest way to do is to use an S-parameter analysis, or sp in Cadence. In 

particular, we are interested in the S11 at this stage, which is measurement of how much of the 

generated power at the port is reflected back to the port. Go to ADE -> “Analyses” -> “Choose” -> 

“sp”. At the “Ports”-section, click on the “Select”, the click on your input port and then on your 

output port, then press the Esc-key. At the “Frequency”-section, select the start frequency as 1 GHz, 

and the stop frequency as 10 GHz. Leave the sweep type as “Automatic”. When everything is done, it 

should look like Figure 4. Press “OK” and run the simulation. sp is a small-signal analysis, just like ac, 

so the simulation should be very fast. 

After the simulation is done, go to “Results” -> “Direct plot” -> “Main form”. A new window will 

open, containing plotting options for every simulation that was run, except for dc. Under Function, 

choose “SP”, select “Rectangular” and “db20”, and click on “S11”-button. A plot will appear, plotting 

S11 versus frequency. Good matching is generally considered to be below –10 dB. Do you have good 

matching at 5 GHz? 

 



 

Figure 4: S-parameter setup 

W hile S11 is very useful for getting an overview of the matching, it doesn’t really tell you why the 

matching is not perfect. For that, we can use Z11 instead, i.e. what impedance is seen by first port. 

Go back to the “Main form”-window, but this time, select “ZP” instead of “SP”. Then select 

“Rectangular” and “Real”, then press on “Z11”. Now, the resistance seen by PORT0 is plotted. 

Repeat again but select “Imag” instead of “Real”. This time, the reactance seen by PORT0 is plotted. 

To get perfect matching, the resistance should be 100 Ω and the reactance 0 Ω at 5 GHz. If the 

reactance is positive at this point, your resonance frequency is too low, and you should decrease the 

value of some of your reactive elements. If your reactance is negative, the opposite applies. If your 

resistance is off, you can tweak LS. In this case, your resistance should be quite good, but the 

resonance frequency should be too low. This is because we haven’t accounted for Cgd in our 

calculations, which causes a quite significant capacitive load due to the Miller effect, despite the 

usage of a cascode. The easiest way to solve this is to lower LG since that does not affect the resistive 

part.  

A helpful tip when using the “Main form” window is the “Add to Outputs”. If you tick this option, 

Cadence will automatically generate an output expression in ADE, so that the next time you run the 

simulation, the same plot will directly be plotted. If you use this, remember to untick the option the 

next time you use the “Main form”-window, otherwise things can become quite chaotic. 

 



4. Simulating gain and noise 

For simulating the gain, we can use the sp-analysis again. Open the “Main form”-window, select 

“SP”, “Rectangular”, “dB20” and click on “S21”. 

What is your gain and 3-dB bandwidth? 

For noise simulations, we will use the noise-analysis. This is also a type of ac-analysis, so it will be 

very fast. In ADE, go to “Analyses” -> “Choose” -> “noise“. Once again, we set a frequency span 

between 1 GHz and 10 GHz. At “Output Probe Instance”, click “Select” and click on the output port. 

At “Input Probe Instance”, click “Select” and click on the input port. Click “OK” and run the 

simulation. Open the “Main form”-window. Note that this time there are two options at the top, 

“sp” and “noise”. Select “noise”, “Noise Figure”, “V / sqrt(Hz)”, “dB20” and “Plot”. Now, noise figure 

versus frequency will be plotted. At 5 GHz, you should have excellent noise performance, with a 

noise figure well below 1 dB. 

A helpful tool when running a noise simulation is “Noise Summary”. This will tell you where the noise 

is coming from, which can help us make necessary changes. In ADE, go to “Results” -> “Print” -> 

“Noise Summary…”, select “spot noise”, change “Frequency Spot (Hz)” to 5G, click on “Include All 

Types”, and change “top” from 3 to 10, see Figure 5. Click “OK”. Here you can see what device is 

generating the noise, what type of noise it is, and how much noise it generates. “rn” is resistive 

thermal noise, “id” is transistor thermal noise, and “fn” is flicker noise. For good performance, the 

thermal noise from PORT0 should completely dominate, since this means that we are adding very 

little extra noise to the system. 

 

Figure 5: Noise summary setup. 

In the noise summary, there is one major noise type missing: The induced gate noise. This is because 

the transistor models used in this PDK does not account for this kind of noise3. Therefore, we should 

add it manually. We can do this by adding a resistor and a voltage-controlled current source (vccs) in 

 
3 In more modern PDKs, this is typically modeled. 



parallel with gate-source connection of the input transistors, see Figure 6. Now, we need to size the 

resistor and the transconductance G of the vccs correctly. The noise generated by the resistor is: 

𝑖𝑛𝑅
2̅̅̅ ̅ = 4𝑘𝑇𝑅Δ𝑓 ∙ 𝐺2 

The induced gate noise is given by: 

𝑖𝑛𝑔
2̅̅̅ ̅ = 4𝑘𝑇

𝛿𝜔2𝐶𝑔𝑠
2

5𝑔𝑚
Δ𝑓 

These equations should give the same noise: 

𝑖𝑛𝑅
2̅̅̅ ̅ = 𝑖𝑛𝑔

2̅̅̅ ̅ ⇒ 𝑅 ⋅ 𝐺2 =
𝛿𝜔2𝐶𝑔𝑠

2

5𝑔𝑚
 

The easiest way to implement this is to set R = 1Ω, and then calculate G. 

Calculate G at 5 GHz, using δ = 2, and re-simulate the noise. Do you see any difference? 

Another source of noise we have not accounted for yet is the noise coming from the series 

resistance of LG. This noise can be very troublesome since it appears in the signal path before the 

active devices. The series resistance is given by: 

𝑅𝐺 =
𝜔𝐿𝐺

𝑄
 

Luckily, this inductor can be implemented as a bondwire (a metal wire connecting a pad of the chip 

to the package/PCB), which have a high Q. 

Calculate this resistance at ω0, assuming a Q value of 20, and repeat the noise simulation. You do not 

have to add an extra resistor, in the properties of the inductor there is a parameter called 

“Resistance” in which you can add the value of your series resistance. 

 

Figure 6: Resistor and vccs added to replicate induced gate noise. 

  



5. Compression point simulation using PSS 

We will now use one of the most powerful tools for RFIC design, the periodic steady state (PSS) 

analysis. PSS assumes (as the name implies) that your system is periodic with some fundamental 

frequency and harmonics of this fundamental frequency. PSS allows us to look at large-signal 

behaviors, such as linearity and oscillation in an oscillator, while being much faster and much easier 

to analyze than a transient simulation. It can also handle frequency translations, in for instance a 

mixer. In addition to this, we can combine the PSS simulation with small-signal analyses that uses the 

results from PSS as its operating point (similar to how an ac analysis uses a DC simulation as its 

operating point). We will see two examples of this later. 

 

Figure 7: Port configuration for PSS analysis. 

The compression point is a common measurement of the linearity of the circuit. It is the input power 

(in the case of input-referred compression point) at which the gain has dropped by 1 dB from a 

perfectly linear gain. To simulate it, open the properties of the input port. Configure it as shown in 

Figure 7. Import the new variables into ADE and set frf = 5G and prf = -60. Then, go to “Analyses” -> 

“Choose” -> PSS. Tick the box “Auto Calculate” (notice that it becomes 5GHz, since this is the only 

signal present), set “Number of harmonics” to 7 (this is how many overtones the PSS should 

consider), the “Accuracy Defaults” to conservative (the most accurate setting) and “Run transient?” 

to “No” (this can be necessary if the circuit has some settling behavior, for instance in an oscillator). 

Also tick the box “Sweep”, set “Variable Name” to “prf” and sweep from -60 to 10 using a step size 

of 10. The result should look like Figure 8. Run the simulation and open up the “Main form”-window. 

Go to “pss”, select “Compression Point”, leave everything as default values, except set “Input Power 

Extrapolation Point (dBm)” -60 and select 5G as your “1st Order Harmonic). Finally, click on the 

output port and a Pin versus Pout plot should appear, see Figure 9. The white line corresponds to a 

perfectly linear system with a slope of 1 dB/dB and starts 1 dB below the real signal. Thus, when the 

lines cross, the gain has dropped by 1 dB. 



 

Figure 8: PSS setup for compression point simulation. 

As you can see, this line is rather “choppy”. To improve accuracy, we need smaller steps in the 

sweep. Repeat the simulation with higher resolution. 

 

Figure 9: Result of compression point simulation. 



6. IIP3 analysis using PSS and PAC 

The input-referred third intercept point (IIP3) is the other common linearity measurement. Here, 

instead of only having one signal, we apply two signals at the input (a so-called two-tone test). If the 

two tones are located at f1 and f2, the nonlinearities in the LNA will create tones at 2f1- f2 and 2f2- f1, 

which will grow as the power of 3 with respect to the input power (or 3 dB/dB). If the two tones are 

close to each other, this can be very tricky to simulate using only PSS, since it would require a lot of 

harmonics (the fundamental tone would in this case be f2- f1). The way to solve this is to use a 

Periodic AC (PAC) analysis, which will use the results from PSS as its operating point. 

Open the properties of PORT0 and set “PAC Magnitude (dBm)” to “prf”. If this field does not appear, 

tick the box “Display small signal params”. For f1, we will use frf = 5GHz. f2 we will generate using 

PAC4. 

Go to ADE -> ”Analyses” -> ”Choose” -> ”pac”. Change the “Sweeptype” to “relative”, “Relative 

Harmonic” to 1 and frequency to 20 MHz. The first harmonic of the PSS is 5 GHz, so by doing this we 

set the PAC frequency to f2 = 5GHz + 20MHz = 5.02 GHz. Finally, set the “Maximum sideband” to 7 

and click “OK”. Runt the simulation (make sure that PSS is also ticked). When it finishes, go to 

“Results”->”Direct plot”->”Main form”->”pac”. Select “IPN Curves”, change the “Circuit Input Power” 

to “Variable Sweep”, set “Input Extrapolation Point (dBm)” to -60 and make sure that the drop-down 

lists are set to “Input Referred IP3” and “3rd”. Now we just need to figure out which frequencies to 

choose. For the “1st Order Harmonic”, we should choose the frequency generated by the PAC, which 

is 5.02 GHz. The “3rd Order Harmonic” will be 2f1- f2 = 10GHz – 5.02 GHz = 4.98 GHz. Select these 

harmonics and click on the output port. A plot like Figure 10 should appear. 

 

Figure 10: Result of IIP3 simulation. 

7. Blocker tolerance 

As a final analysis, we will simulate how a large signal affects the noise performance of the LNA. Let’s 

say, for instance, that we are trying to “listen” to a signal at 5.02 GHz, but at the same time a very 

 
4 If you are interested in why this works, you can read more here: https://designers-
guide.org/analysis/intercept-point.pdf 

https://designers-guide.org/analysis/intercept-point.pdf
https://designers-guide.org/analysis/intercept-point.pdf


large signal is present at 5.0 GHz. What happens then to the noise figure? To analyze this, we can 

use pnoise, which is a noise analysis done in the presence of large, periodic signals. 

For this one, leave the PSS as it was for IIP3 (so that it sweeps prf). Go to “Analyses” -> “Choose” -> 

“pnoise” and change all the settings according to Figure 11. This will cause the pnoise to look at the 

noise at 5.02 GHz. Run the simulation and open the “Main form”-window. Go to “pnoise” -> “Noise 

Figure” -> “Plot”. Cadence will now plot the noise figure versus relative frequency with prf as a 

parameter, which is not very helpful. Righ-click on the x-axis, select “Swap Sweep Var…” and click 

“OK”. Now the noise figure at a relative offset of 20 MHz (i.e. 5.02 GHz) versus prf is plotted. At what 

input has the noise figure degraded by 1 dB? This is known as the blocker tolerance. 

 

Figure 11: Setup for a blocker tolerance simulation. 


