
2015-04-29 Ove Edfors - ETIN15 1

Ove Edfors, Department of Electrical and Information Technology
Ove.Edfors@eit.lth.se

RADIO SYSTEMS – ETIN15

Lecture no: 10
Multi-carrier

and
Multiple antennas



2015-04-29 Ove Edfors - ETIN15 2

Contents

• Multicarrier systems
– History of multicarrier
– Modulation/demodulation
– Equalization
– Performance

• Multiple antenna systems
– Different configuratuons
– Diversity gains
– Datarates using MIMO (capacity)



2015-04-29 Ove Edfors - ETIN15 3

Multi-carrier
or

OFDM – orthogonal frequency-
division multiplexing
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Single/multi-carrier
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• Using N cubcarriers increases 
  the symbol length by N times.
• The ISI is reduced by the same
  amount (in symbols).
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History and evolution [1]

1950’s: Few subcarriers, with non-overlapping spectra

f

• Military systems, e.g. the Kineplex-modem
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History and evolution [2]

1960’s: Subcarriers with overlapping spectra

Increased subchannel density and increased data rate.

f



2015-04-29 Ove Edfors - ETIN15 7

History and evolution [3]

1970’s: Digital modulation of subcarriers
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History and evolution [4]

1980’s: Improved digital circuits increses interest

Channel

#n-1 #n-1#n #n#n+1 #n+1

Channel

#n-1 #n-1#n #n#n+1 #n+1

#n-1#n-2 #n #n+1

{{ { {Copy

No guard interval => Interference between both subcarriers and symbols

Guard interval => No interference between symbols

Cyclic prefix => No interference between neither subcarriers nor symbols 

time time

timetime

time

Copy Copy Copy
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History and evolution [5]

• 1990’s: Commercial applications appear

– Increased interest for OFDM in wireless applications
– First applications in broadcasting (Audio/Video)
– One of the candidates for UMTS (Beta proposal)
– Applied in wireless LANs

• 2000’s: One of the really hot technologies
– 54 Mbps and beyond WLANs (based on OFDM) hit the mass 

market (IEEE802.11g/n)
– OFDM is the technology used when improving and moving 

beyond 3G systems (LTE – long term evolution)
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Transmitters and receivers
An N-subcarrier transmitter
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hTXCP

N-point IDFT: sm , k=
1
N ∑

n=0

N−1

xn , k exp  j2 mnN   for 0≤m≤N−1

Adding CP: sm , k=sNm , k  for  −L≤m≤−1

s  t =hTX  t ∗∑
k

∑
m=−L

N −1

sm , k  t−k NL m T samp TX filtering:

k       – symbol
m      – sample
n       – subcarrier
L       – CP length
Tsamp – sampling period
hTX    – TX filter

s  t 

L=3 N=8
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xN−1, k

s0, k

s1, k

sN−1, k
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CP CP

Transmitters and receivers
... through the channel ...

hch  t 

s  t 

n  t 

r  t =s  t ∗hch  t n  t 

t

CP CP

t

}

T ch

}

t

}

LT samp

As long as the CP is longer than the delay spread of the
channel, LTsamp > Tch, it will absorb the ISI.

By removing the CP in the receiver, the transmission becomes

ISI free.

Channel Noise

s  t 

r  t 

T ch
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Transmitters and receivers
N-subcarrier receiver
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N-point DFT: yn , q=∑
p=0

N−1

r p , qexp − j2 npN   for 0≤n≤N−1

Sampling: zk=z k T samp 

z  t =hRX  t ∗r  t RX filtering:

q       – symbol
p       – sample
n       – subcarrier
L       – CP length
Tsamp – sampling period
hRX   – RX filter

L=3 N=8

21 3
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T samp

Removing CP: r p ,q= zq  NL  p  for 0≤ p≤N−1

r  t 

r0, k

r1, k

rN−1, k

y 0, k

y1, k

yN−1, k
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Transmitters and receivers
Modulation spectrum [1]

Transmitted OFDM symbol decomposed
into different subcarriers (ideal case,
4 subcarriers shown, no CP)

N T samp

Power spectrum of one subcarrier
transmitted at fn Hz.

ff n

S n  f n 

sinc  x =
sin  x

 x

S n  f ∝sinc2   f − f n  N T samp 

N - Subcarriers
T samp - Sampling period

1
2
S n  f n 

1 /  N T samp 

t



2015-04-29 Ove Edfors - ETIN15 14

Transmitters and receivers
Modulation spectrum [2]

f

The total modulation spectrum is
a sum of the individual subcarrier
spectra (assuming independent
data on them).

The distance between each subcarrier
becomes                  which is the same
as the 3 dB bandwidth of the individual
subcarriers. Using all N subcarriers (8
in this case) we get:

B=N×1/ N T samp =1 /T samp

f
B=1 /T samp

1/ N T samp 
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Transmitters and receivers
Modulation spectrum [3]

=T samp f = f / B
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Transmitters and receivers
Simplified model

Simplified model under ideal conditions
(no fading and sufficient CP)

Simplified model under ideal conditions
(no fading and sufficient CP)

htot  t =hTX  t ∗hch  t ∗hRX t 
H tot  f =H TX  f ×H ch  f ×H RX  f 

Total filter in the signal path:

Given that subcarrier n is
transmitted at frequency fn

the attenuations become:

H n ,k=H tot  f n 

x 0, k

xN−1, k

H 0, k

H N−1, k

n0, k

nN−1, k

y 0, k

yN−1, k
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Transmitters and receivers
Focus on one subchannel

Before IDFT in TXBefore IDFT in TX After DFT in RXAfter DFT in RX

Amplitude scaling:

Rotation:

Noise:

∣H n , k∣

Subchannel k

• Simple equalization of each subchannel: Back-rotate and scale

(16QAM)

xn , k

H n , k nn , k

yn , k

xn , k yn , k

∢H n , k

nn , k
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Coded OFDM (CODFM)
Uncoded performance

PROBLEM:

• Only one fading tap per subchannel => NO DIVERSITY => POOR PERFORMANCE

• The diversity is in there ... but additional techniques are needed to exploit it!

SOLUTION:

• Spreading the information (data) across several subcarriers or OFDM symbols

• This can be done using interleaving and coding => Coded OFDM (CODFM)

xn , k

H n , k nn , k

yn , k
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Coded OFDM (CODFM)
Channel correlation
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One OFDM symbol
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Channel attenuations
are correlated in the
time/frequency grid.

If we spread each bit of
information over several
well separated points
in the OFDM time/frequency
grid, the same ”bit” is 
is received over several
”one tap” fading channels.

Combining these in the
receiver, we obtain diversity.
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Coded OFDM (CODFM)
Coding and interleaving
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hTXCPCoding Interleaving

New blocks

(Corresponding ones at RX) 

The code spreads
the information
across several
code symbols.

The interleaver reorders
the code symbols so that
neighbouring code symbols
are ”well” separated in 
frequency and/or time during
transmission.

Interleaving can be performed:

- across subcarriers in
  an OFDM symbol (small delay)

- in time over several
  OFDM symbols (longer delay)

- or in a combination
  of the above.
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Coded OFDM (CODFM)
Diversity
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No fading

Rayleigh fading
Kth order diversity
(Coded OFDM)

10 dB

10K x

The better the coding and interleaving scheme, the larger the obtained
diversity order.
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Multiple antenna systems
or

MIMO – multiple input/multiple output
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System model [2]

RXTX

A simple model: Superposition of received waves
[Movement -> fading]

h

y hx n= +

Fading -> Poor performance

x
No diversity (SISO):
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System model [3]

An improvement: Antenna diversity
1

2
1

TX diversity (MISO):

1

2
1

RX diversity (SIMO):

[ y1

y2
]=[h1,1

h2,1
] x1[n1

n2
]

1

2

1

2

TX&RX diversity (MIMO):

[ y1

y2
]=[h1,1 h1,2

h2,1 h2,2
][ x1

x2
][n1

n2
]

y1=[h1,1 h1,2 ] [ x1

x2
]n1
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Lobe-forming at transmitter

1a

2a

TM
a

s  t 

The lobe forming coefficients
can steer the direction in which
the signal is transmitted.
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Several input signals

s1  t 

s2  t 

s3  t 

s1  t 

s2  t 

s3  t 

One set of lobe forming coefficients
for each input signal
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Several output signals

( )1r t
( )2r t

( )3r t

Lobe forming on the receiver side
can give several output signals.
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Multiple antennas at both ends

TX RX

With N antennas on each
side we can form N different
lobes and hence create N
parallel channels!

Note that the three channels are separated spatially and can therefore
use the same bandwidth! We have ”trippled” the channel capacity.
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A general (narrow-band) model

Some fundamental questions:
- How do we model the channel matrix H?
- How do we model the noise (interference) n?

We will see that these have a large impact on what
we can obtain.

The ”general” case with MT TX antennas and
MR RX antennas:

y=[
y1

y2

⋮
yM R

]=[
h1,1 h1,2 ⋯ h1, M T

h2,1 h2,2 ⋯ h2,M T

⋮ ⋮ ⋱ ⋮
hM R ,1

hM R ,2
⋯ hM R , M T

] [
x1

x2

⋮
xM T

][
n1

n2

⋮
nM R

]=Hxn
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What started the interest in 
MIMO?

J.H. Winters. On the Capacity of Radio Communication Systems with Diversity
in Rayleigh Fading Environment. IEEE JSAC, vol. SAC-5, no. 5, June 1987.

Model

H Independent Rayleigh
fading. [i.i.d. complex
Gaussian variables].

n I.i.d complex Gaussian
variables.

Findings

Equal number of RX and TX
antennas, MT = MR = M.

Linear processing at receiver:
Up to M /2 channels, each with
the same data rate as a single
channel.

Non-linear processing at receiver:
Up to M  channels, each with
the same data rate as a single
channel.
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Capacity – No fading & AWGN 
[1]

Singular value decomposition of the (fixed) channel H:

where Q1 (MRxMR) and Q2 (MTxMT) are unitary matrices
and    (MRxMT) is a matrix containing the singular values
on its diagonal.

Multiply by Q1
H from left:

Q1
H y=Q2

H xQ1
H n

y x n

y= xn

Only ”rotations”
of y, x and n.

All-zero, exept
diagonal.

y=Hxn=Q1Q2
H xn





2015-04-29 Ove Edfors - ETIN15 32

Capacity – No fading & AWGN 
[2]

What have we obtained?
Parallel independent
channels:

Number of non-zero
singular values r = rank(H).

y=[
1

⋱
 r

0
⋱

] xn

Shannon’s ”standard case”:

(+ channels with           )

x1

1 n1

y1

xr

 r nr

yr

 k=0
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Capacity – No fading & AWGN 
[3]

Shannon: The total capacity of parallel independent
channels is the sum of their individual capacities.

Equal power distribution (channel not known at TX):

C=∑
k

C k=∑
k

log2 1 k
2 =log2∏

k=1

r

1 k
2 

Constant dep. on e.g. TX power and noise.

C k=log2 1SNR k 

C=∑
k

C k=∑
k

log2 1SNRk 



2015-04-29 Ove Edfors - ETIN15 34

Capacity – No fading & AWGN 
[4]

A neat trick:

det  IM R
HHH =det Q1Q1

H
Q1 Q2

HQ2 
HQ1

H 
IM R

H HH

=detQ1  I M R
Q2

HQ2 
H Q1

H

=det  I M R
 

H 

=det [
11

2

⋱

1 r
2

1
⋱

1
]=∏

k=1

r

1 k
2 
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Capacity – No fading & AWGN 
[5]

CONCLUSION:

This relation is also derived in e.g 
G.J. Foschini and M.J. Gans. On Limits of Wireless Communications in a Fading
Environment when Using Multiple Antennas. Wireless Personal Communications,
no 6, pp. 311-335, 1998.

[bit/sec/Hz]

Normalization:  - SNR at each receiver branchr

C=log2 det IM R



M T

HHH 

C=log2∏
k=1

r

1 k
2 =log2 det IM R

HHH 

This leads to the fact that we
can increase data rate by 
increasing the number of
antennas, without using more
transmit power.
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Massive MIMO

Base
station

Down-link:

Base
station

Up-link:

Massive MIMO implies that we let the number of base station
antennas (M) grow very large … in the hundreds!

Channel reciprocity assumed
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Two “typical” precoders

Maximum-ratio transmission (MRT)

Zero-forcing (ZF)

Hermitian
transpose
of channel

Pseudo-
inverse
of channel

Base
station
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Why do we care about Massive 
MIMO?

Several orders of magnitude
more energy efficient!

Much higher
spectral efficiency!

Massive MIMO with
100 BS antennas

[Plot from  Larsson, E. ; Edfors, O. ; Tufvesson, F. ; Marzetta, T., “Massive MIMO for next 
generation wireless systems”,  IEEE Communications Magazine, Vol. 52 , Issue 2, 2014]
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What happens if we use many 
antennas … in the hundreds?

• 100-antenna base station
50 synchronized software-radio units 
(USRPs), each with two antennas and 
Kintex 7 FPGA processing.

• 10 single-antenna terminals
Each pair of terminal antennas served by 
a USRP. All multiplexed in the same time-
frequency resource

• LTE-like physical layer OFDM
1200 subcarriers, 20 MHz BW

• Full flexibility
Architecture, antenna array, and 
baseband processing can be configured

The Lund University Massive MIMO
(LuMaMi) testbed
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Video time ...

Understanding massive MIMO in roughly two minutes
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Summary

• Multi-carrier technology (OFDM) reduces the effect 
of intersymbol interference (as compared to 
single carrier).

• Only simple equalization is required in an OFDM 
receiver.

• Modulation/demodulation can be done using Fast 
Fourier Transforms (FFTs).

• Multiple antenna systems increase our ability to 
obtain diversity gains.

• With MIMO systems we can increase the datarate 
by using more antennas, without increasing 
transmit power or bandwidth.

• Massive MIMO can give very large gains.
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