## **RADIO SYSTEMS - ETIN15**

# Lecture no:

## Channel models and antennas

Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se

#### 2015-04-08

#### 2

#### Contents

- Why do we need channel models?
- Narrowband models
  - Review of properties
  - Okumura's measurements
  - Okumura-Hata model
  - COST 231-Walfish-Ikegami model
- Wideband models
  - Review of properties
  - COST 207 model for GSM
  - ITU-R model for 3G
- Antennas
  - Efficiency and bandwidth
  - Mobile station antennas
  - Base station antennas
  - Dipole and parabolic antennas



### WHY DO WE NEED CHANNEL MODELS?



# Why do we need channel models?



During system design, testing and type approval:

Simple models reflecting the important properties of important channels (best, average, worst case)

Models used to make sure that the system design behaves well in typical situations.

During network design:

More detailed models appropriate for certain geographical areas

Models used to obtain an efficient network in terms of base station locations and other parameters



### NARROWBAND MODELS



### Narrowband models Review of properties



Narrowband models contain "only one" attenuation, which is modeled as a propagation loss, plus large- and small-scale fading.

Path loss: Often proportional to  $1/d^n$ , where n is the propagation exponent. (n may be different at different distances)

Large-scale fading: Log-normal distribution (normal distr. in dB scale)

Small-scale fading: Rayleig, Rice, Nakagami distributions ... (not in dB-scale)

NOTE: Several of these models are found in an on-line appendix of the textbook which can be downloaded from the publisher's website (see "Literature" on course web).

Printed copies of textbook appendices are allowed during Part B of the written exam.

### Okumura's measurements Background

Extensive measurement campaign in Japan in the 1960's.

Parameters varied during measurements:

| Frequency             | 100 – 3000 MHz                     |
|-----------------------|------------------------------------|
| Distance              | 1 – 100 km                         |
| Mobile station height | 1 – 10 m                           |
| Base station height   | 20 – 1000 m                        |
| Environment           | medium-size city, large city, etc. |

Propagation loss is given as a **median** value (50% of the time and 50% of the area).

Results from these measurements are displayed in figures 7.12 – 7.14.

#### Okumura's measurements How to calculate the prop. loss

- 1. We start by calculating the free-space attenuation
- 2. Apply a frequency and distance dependent correction
- 3. Apply a BS-height and distance dependent correction
- 4. Apply a MS-height, frequency and environment dependent correction



#### **Okumura's measurements** Example



Propagation at 900 MHz in medium-size city with 40 m base station antenna height and 1.5 m mobile station antenna height.

Use Okumura's curves to calculate the propagation loss at a distance of 30 km between base station and mobile station.

#### **Okumura's measurements 1. Calculate free-space loss**



Attenuation between two isotropic antennas in free space is (free-space loss):

$$L_{\text{free}|\text{dB}}(d) = 20 \log \left(\frac{4 \pi d}{\lambda}\right)$$

The obtained value does not depend on antenna heights.

900 MHz and 30 km distance

#### **Okumura's measurements 2. Apply correction for excess loss**



#### **Okumura's measurements 3. Apply correction of BS height**



#### 2015-04-08

#### **Okumura's measurements 4. Apply correction of MS height**



#### **Okumura's measurements Summary of example**



Propagation loss (between isotropic antennas) using Okumura's measurements:

$$L_{Oku|dB} = 121 + 36.5 - (-16) - (-3) = 176.5 \text{ dB}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
Calc. step: 1 2 3 4

### The Okumura-Hata model Background

In 1980 Hata published a parameterized model, based on Okumura's measurements.

The parameterized model has a *smaller range of validity* than the measurements by Okumura:

| 150 – 1500 MHz |
|----------------|
| 1 – 20 km      |
| 1 – 10 m       |
| 30 – 200 m     |
|                |

### The Okumura-Hata model How to calculate prop. loss

$$L_{O-H} = A + B \log(d_{|km}) + C$$
  

$$A = 69.55 + 26.16 \log(f_{0|MHz}) - 13.82 \log(h_b) - a(h_m)$$
  

$$B = 44.9 - 6.55 \log(h_b)$$



|                              | $a(h_m) =$                                                                                                                              |                                                             | <i>C</i> =                                                                                                         |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| Metropolitan<br>areas        | 8.29 $(\log(1.54 h_{\rm m}))^2 - 1.1$ for $f_0 \le 200 {\rm MHz}$<br>3.2 $(\log(11.75 h_{\rm m}))^2 - 4.97$ for $f_0 \ge 400 {\rm MHz}$ |                                                             | 0                                                                                                                  |  |
| Small/medium-<br>size cities | $(1.1\log(f_{0 MHz}) - 0.7)h_m - (1.56\log(f_{0 MHz}) - 0.8)$                                                                           | 0                                                           |                                                                                                                    |  |
| Suburban<br>environments     |                                                                                                                                         | $-2(\log(f_{0 MHz}/28))^{2}-5.4$                            |                                                                                                                    |  |
| Rural areas                  |                                                                                                                                         | $-4.78 \left( \log \left( f_{0 \mathrm{M}} \right) \right)$ | $-4.78 \left( \log \left( f_{0 \text{MHz}} \right) \right)^2 + 18.33 \log \left( f_{0 \text{MHz}} \right) - 40.94$ |  |

#### 2015-04-08

#### COST 231-Walfish-Ikegami model Background

The Okumura-Hata model is not suitable for micro cells or small macro cells, due to its restrictions on distance (d > 1 km).

The COST 231-Walfish-Ikegami model covers much smaller distances and is better suited for calculations on small cells.

| Frequency             | 800 – 2000 MHz |
|-----------------------|----------------|
| Distance              | 0.02 – 5 km    |
| Mobile station height | 1 – 3 m        |
| Base station height   | 4 – 50 m       |

#### COST 231-Walfish-Ikegami model How to calculate prop. loss



Details about calculations can be found in Appendix 7.B.



### WIDEBAND MODELS



### Wideband models Review of properties



Let's assume the tapped delay-line model

$$h(t,\tau) = \sum_{i=1}^{N} \alpha_i(t) \exp(j\theta_i(t)) \delta(\tau - \tau_i)$$

The **power-delay profile** tells us how much energy the channel has at a certain delay  $\tau$  (essentially the rms values of the  $\alpha_i(t)$ 's).

The **Doppler spectrum** tells us how fast the channel changes in time (essentially how fast the  $\alpha_i(t)$ 's and  $\theta_i(t)$ 's change). There can be one Doppler spectrum for each delay.

The COST 207 model specifies:

FOUR power-delay profiles for different environments.

FOUR Doppler spectra used for different delays.

IT **DOES NOT** SPECIFY PROAGATION LOSSES FOR THE DIFFERENT ENVIRONMENTS!



#### 1666 100-511 100-511

#### Four specified power-delay profiles



2015-04-08



2015-04-08





2015-04-08



There are also suggested tapped delay-line implementations, with six Rayleigh-fading taps per channel. See Appendix 7.C (on-line).

#### **QUICK QUIZ**: The system bit-rate of GSM is 271 kbit/s.

How long is one bit in time?

How long are the different COST 207 channels, measured in bit-times?

### Wideband models ITU-R model for 3G

1666 100-511 100-511

The ITU-R model specifies:

SIX different tapped delay-line channels for three different scenarios (indoor, pedestrian, vehicular).

TWO channels per scenario (one short and one long delay spread).

TWO different Doppler spectra (uniform & classical), depending on scenario.

THREE different models for propagation loss (one for each scenario).

The standard deviation of the log-normal shadow fading is specified for each scenario.

The autocorrelation of the log-normal shadow fading is specified for the vehicular scenario.

### Wideband models ITU-R model for 3G



| Tap No.    | delay/ns               | power/dB | delay/ns               | power/dB |
|------------|------------------------|----------|------------------------|----------|
| INDOOR     | CHANNEL A $(50\%)$     |          | CHANNEL B $(45\%)$     |          |
| 1          | 0                      | 0        | 0                      | 0        |
| 2          | 50                     | -3       | 100                    | -3.6     |
| 3          | 110                    | -10      | 200                    | -7.2     |
| 4          | 170                    | -18      | 300                    | -10.8    |
| 5          | 290                    | -26      | 500                    | -18.0    |
| 6          | 310                    | -32      | 700                    | -25.2    |
| PEDESTRIAN | <b>CHANNEL A</b> (40%) |          | <b>CHANNEL B</b> (55%) |          |
| 1          | 0                      | 0        | 0                      | 0        |
| 2          | 110                    | -9.7     | 200                    | -0.9     |
| 3          | 190                    | -19.2    | 800                    | -4.9     |
| 4          | 410                    | -22.8    | 1200                   | -8.0     |
| 5          |                        |          | 2300                   | -7.8     |
| 6          |                        |          | 3700                   | -23.9    |
| VEHICULAR  | CHANNEL A $(40\%)$     |          | CHANNEL B $(55\%)$     |          |
| 1          | 0                      | 0        | 0                      | -2.5     |
| 2          | 310                    | -1       | 300                    | 0        |
| 3          | 710                    | -9       | 8900                   | -12.8    |
| 4          | 1090                   | -10      | 12900                  | -10.0    |
| 5          | 1730                   | -15      | 17100                  | -25.2    |
| 6          | 2510                   | -20      | 20000                  | -16.0    |

#### 2015-04-08



### ANTENNAS





The antenna efficiency measures "how efficiently" an antenna converts the input power into radiation. This translates directly into power consumption and battery life.

Antenna efficiency of mobiles has **decreased** mainly due to cosmetic restrictions.

What cosmetic restrictions?

#### Antennas Bandwidth



We can say that the bandwidth of an antenna is the width of the frequency range over which it fulfills some specification.

Most cellular systems have a bandwidth requirement in the range of 10% of the carrier frequency.

**Example**: 900 MHz GSM needs an antenna that can transmit/receive well in a total bandwidth of about 100 MHz.

It is difficult to make small and efficient broadband antennas!

What happens when we have dual- (900/1800) or triple-band (900/1800/1900) GSM phones ... or phones with 3G and Bluetooth (2.4 GHz) as well?

#### **Antennas Mobile station antennas**





#### **Antennas Mobile station antennas**

The efficiency depends on many parameters, but a very important one is its environment. Below you can see differences in antenna efficiency for 42 test persons holding the mobile.



#### **Antennas Base station antennas**

Base station antenna pattern affected by the mast (30 cm from antenna).



X-Y- Pattern

#### **Antennas Base station antennas**



Base station antenna pattern affected by a concrete foundation.



### Antennas The dipole antenna





[Figure from Ericsson Radio School documentation]

#### 2015-04-08

#### Antennas The parabolic antenna





#### 2015-04-08

#### Summary



- Narrowband models: Okumura's measurements, Okumura-Hata, COST 231-Ikegami-Walfish.
   Mainly models for propagation loss. Fading has to be added.
- Wideband models: COST 207 for GSM & ITU-R for 3G. Mainly specification of power-delay profile and doppler spectrum (IRT-R also gives e.g. path loss).
- Antennas: Efficiency has decreased for mobile antennas. Antenna environment changes their properties. Some specific properties for dipole and parabolic antennas.