RADIO SYSTEMS - ETIN15

Lecture no: 5

Digital modulation

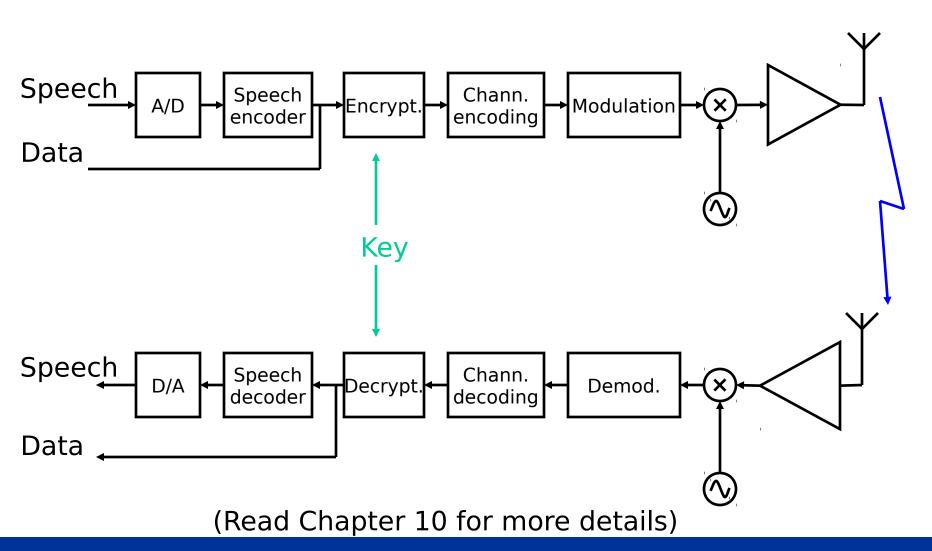
Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se

Contents

- Brief overview of a wireless communication link
- Radio signals and complex notation (again)
- Modulation basics
- Important modulation formats

STRUCTURE OF A WIRELESS COMMUNICATION LINK

A simple structure



RADIO SIGNALS AND COMPLEX NOTATION (from Lecture 3)

Simple model of a radio signal

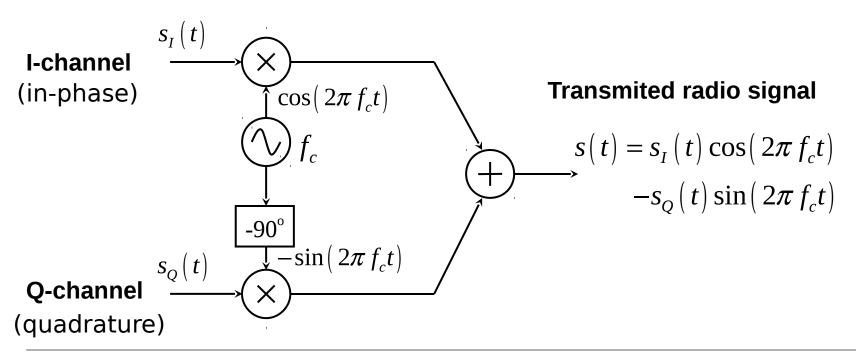
6

A transmitted radio signal can be written

$$s(t) = A\cos(2\pi ft + \phi)$$
Amplitude Frequency Phase

- By letting the transmitted information change the amplitude, the frequency, or the phase, we get the tree basic types of digital modulation techniques
 - ASK (Amplitude Shift Keying)
 - FSK (Frequency Shift Keying)
 - **PSK** (Phase Shift Keying)

The IQ modulator



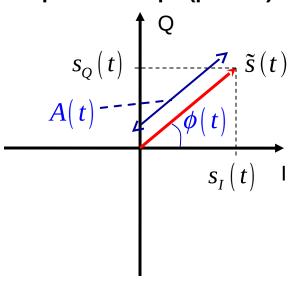
Take a step into the complex domain:

Complex envelope
$$\tilde{s}(t) = s_I(t) + j s_Q(t)$$
Carrier factor $e^{j2\pi f_c t}$

$$s(t) = \text{Re}\left[\tilde{s}(t)e^{j2\pi f_c t}\right]$$

Interpreting the complex notation

Complex envelope (phasor)



Polar coordinates:

$$\tilde{s}(t) = s_I(t) + j s_Q(t) = A(t) e^{j \phi(t)}$$

Transmitted radio signal

$$s(t) = \operatorname{Re}\left\{\tilde{s}(t)e^{j2\pi f_{c}t}\right\}$$

$$= \operatorname{Re}\left\{A(t)e^{j\phi(t)}e^{j2\pi f_{c}t}\right\}$$

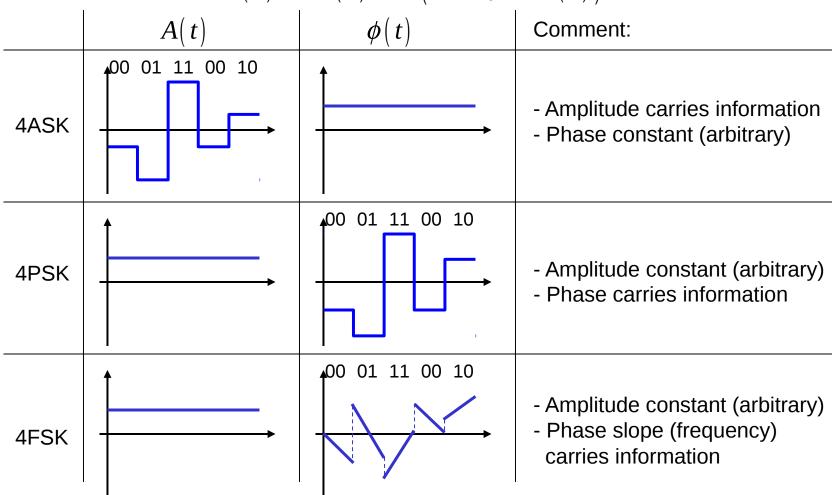
$$= \operatorname{Re}\left\{A(t)e^{j(2\pi f_{c}t+\phi(t))}\right\}$$

$$= A(t)\cos(2\pi f_{c}t+\phi(t))$$

By manipulating the amplitude A(t) and the phase $\Phi(t)$ of the complex envelope (phasor), we can create any type of modulation/radio signal.

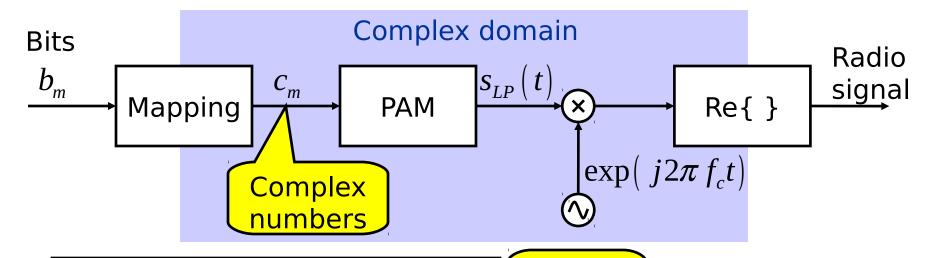
Example: Amplitude, phase and frequency modulation

$$s(t) = A(t)\cos(2\pi f_c t + \phi(t))$$



MODULATION BASICS

Pulse amplitude modulation (PAM) The modulation process



PAM:
$$s_{LP}(t) = \sum_{m=-\infty}^{\infty} c_m g(t - mT_s)$$
 Symbol time

Many possible pulses

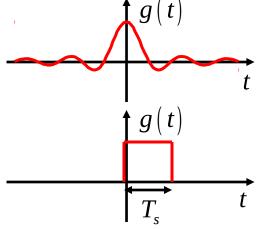
"Standard" basis pulse criteria

$$\int |g(t)|^2 dt = 1 \text{ or } = T_s$$

(energy norm.)

time

 $\int_{-\infty}^{-\infty} g(t)g^*(t-mT_s)dt = 0 \text{ for } m \neq 0 \text{ (orthogonality)}$



Pulse amplitude modulation (PAM) Basis pulses and spectrum

12

Assuming that the complex numbers c_m representing the data are independent, then the **power spectral density** of the base band PAM signal becomes:

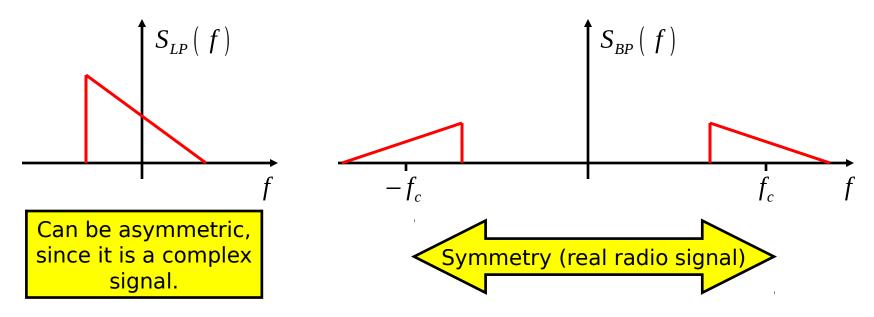
$$S_{LP}(f) \sim \left| \int_{-\infty}^{\infty} g(t) e^{-j2\pi f t} dt \right|^{2}$$

which translates into a radio signal (band pass) with

$$S_{BP}(f) = \frac{1}{2}(S_{LP}(f - f_c) + S_{LP}(-f - f_c))$$

Pulse amplitude modulation (PAM) Basis pulses and spectrum

Illustration of power spectral density of the (complex) base-band signal, $S_{LP}(f)$, and the (real) radio signal, $S_{BP}(f)$.



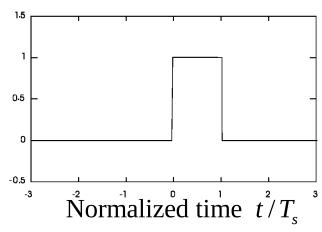
What we need are basis pulses g(t) with nice properties like:

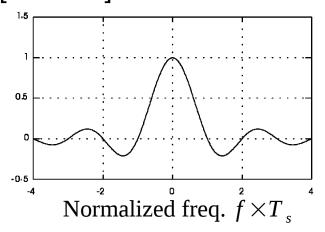
- Narrow spectrum (low side-lobes)
- Relatively short in time (low delay)

Pulse amplitude modulation (PAM) Basis pulses

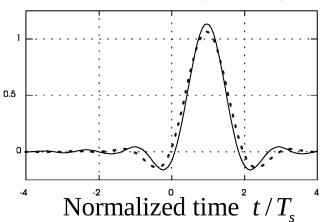
FREQ. DOMAIN

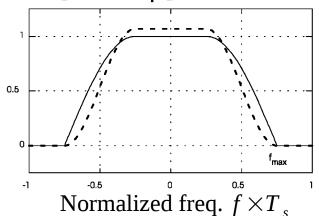
Rectangular [in time]





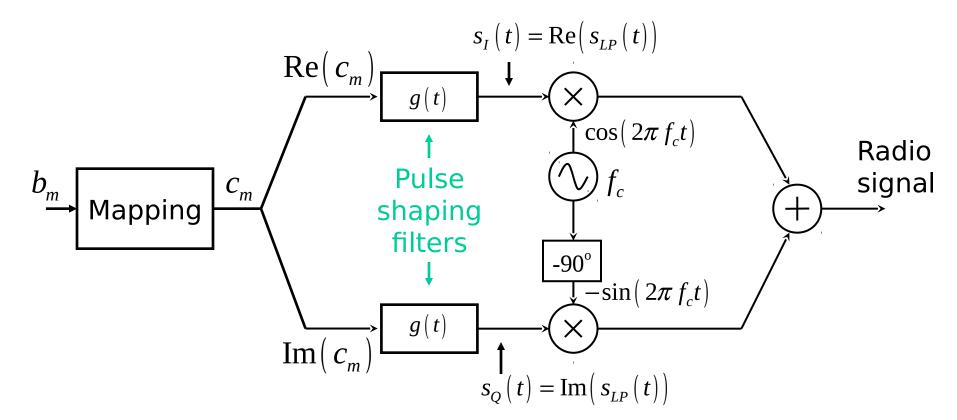
(Root-) Raised-cosine [in freq.]





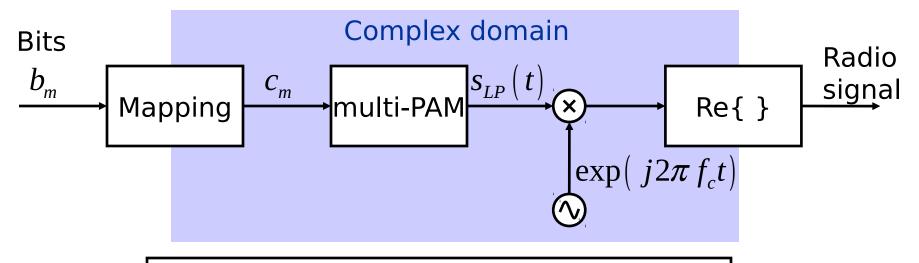
Pulse amplitude modulation (PAM) Interpretation as IQ-modulator

For real valued basis functions g(t) we can view PAM as:



(Both the rectangular and the (root-) raised-cosine pulses are real valued.)

Multi-PAM Modulation with multiple pulses



multi-PAM:
$$s_{LP}(t) = \sum_{m=\infty}^{\infty} g_{c_m}(t - mT_s)$$

"Standard" basis pulse criteria

$$\int |g_{c_m}(t)|^2 dt = 1 \text{ or } = T_s \qquad \text{(energy norm.)}$$

$$\int g_{c_m}(t) g_{c_m}^* (t - kT_s) dt = 0 \text{ for } k \neq 0 \qquad \text{(orthogonality)}$$

$$\int g_{c_m}(t) g_{c_n}^* (t) dt = 0 \text{ for } c_m \neq c_n \qquad \text{(orthogonality)}$$

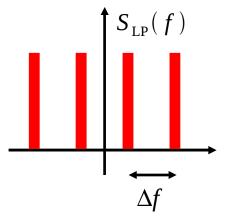
Several different pulses

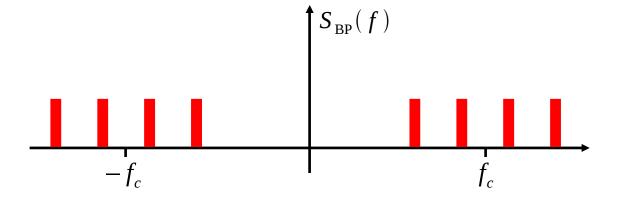
Multi-PAM Modulation with multiple pulses

Frequency-shift keying (FSK) with *M* (even) different transmission frequencies can be interpreted as multi-PAM if the basis functions are chosen as:

$$g_k(t) = e^{-j\pi k\Delta f t}$$
 for $0 \le t \le T_s$

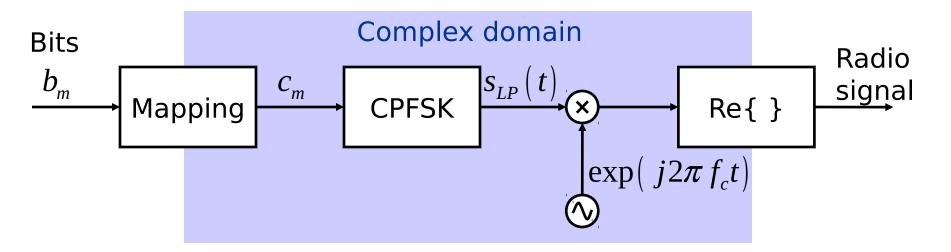
and for k = +/-1, +/-3, ..., +/-M/2





Bits: 00 01 10 11

Continuous-phase FSK (CPFSK) The modulation process



CPFSK:
$$s_{LP}(t) = A \exp(j \Phi_{CPFSK}(t))$$

where the amplitude A is constant and the phase is

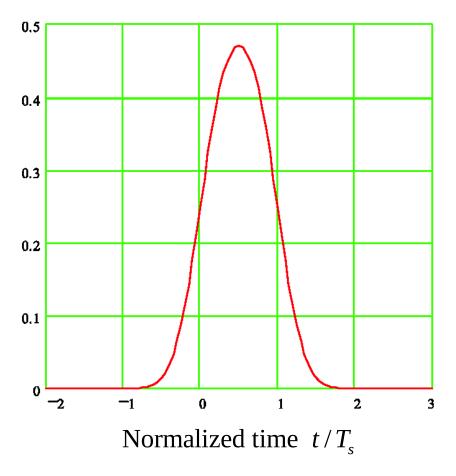
$$\Phi_{\text{CPFSK}}(t) = 2\pi h_{\text{mod}} \sum_{m=-\infty}^{\infty} c_m \int_{-\infty}^{t} \tilde{g} \underbrace{(u-mT) du}_{\text{Phase}}$$

where h_{mod} is the modulation index.

Phase basis pulse

Continuous-phase FSK (CPFSK) The Gaussian phase basis pulse

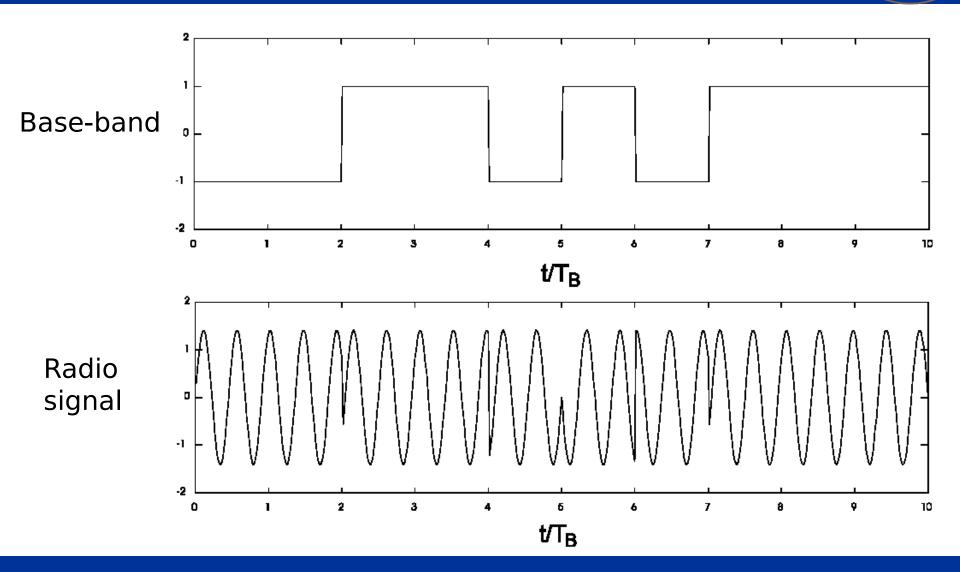
In addition to the rectangular phase basis pulse, the Gaussian is the most common.



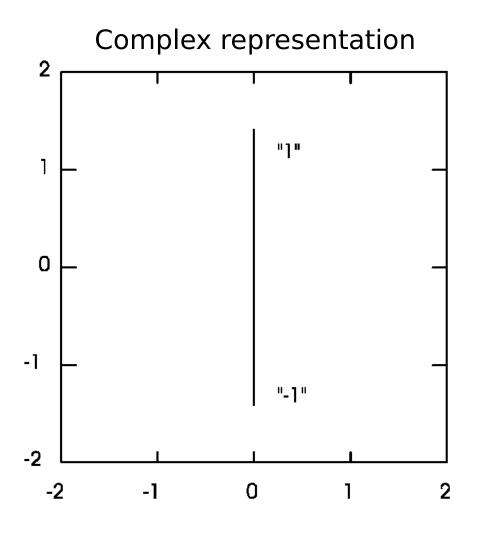
 $BT_{s} = 0.5$

IMPORTANT MODULATION FORMATS

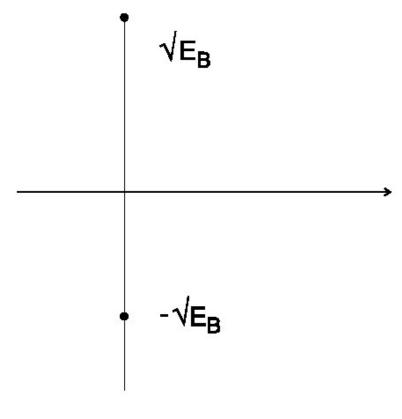
Binary phase-shift keying (BPSK) Rectangular pulses



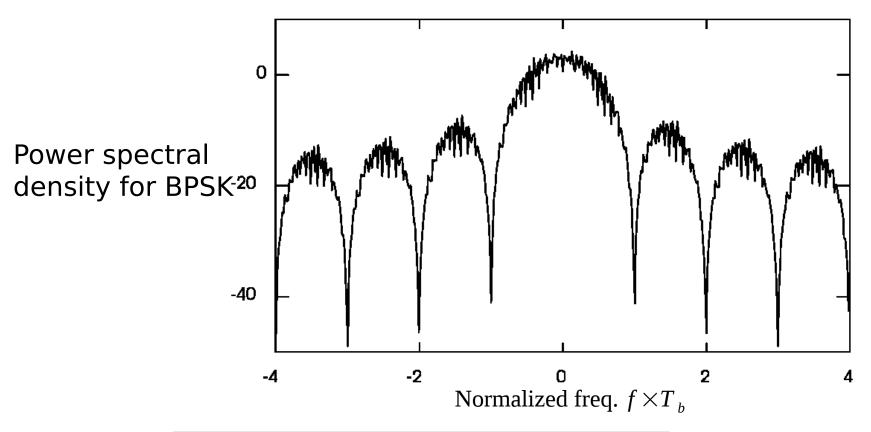
Binary phase-shift keying (BPSK) Rectangular pulses



Signal constellation diagram

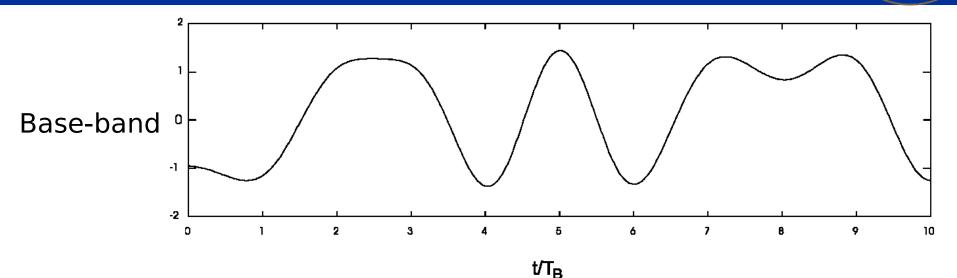


Binary phase-shift keying (BPSK) Rectangular pulses

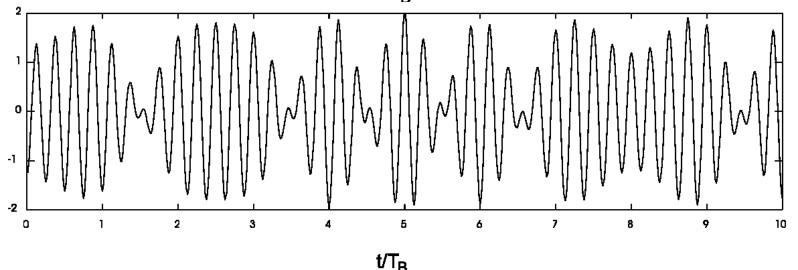


Contained percentage of total energy	spectral efficiency
90%	0.59Bit/s/Hz
99%	0.05Bit/s/Hz

Binary phase-shift keying (BPSK) Raised-cosine pulses (roll-off 0.5)

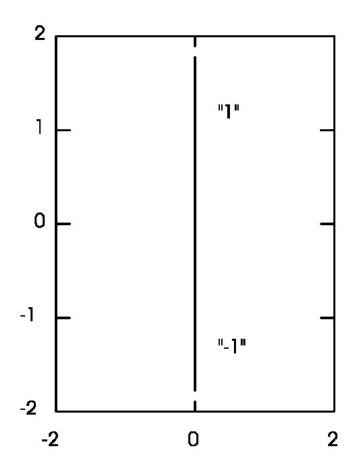


Radio signal

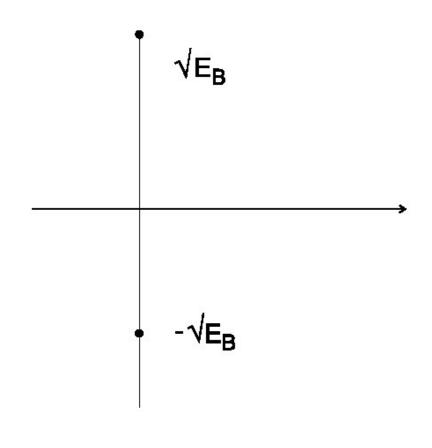


Binary phase-shift keying (BPSK) Raised-cosine pulses (roll-off 0.5)

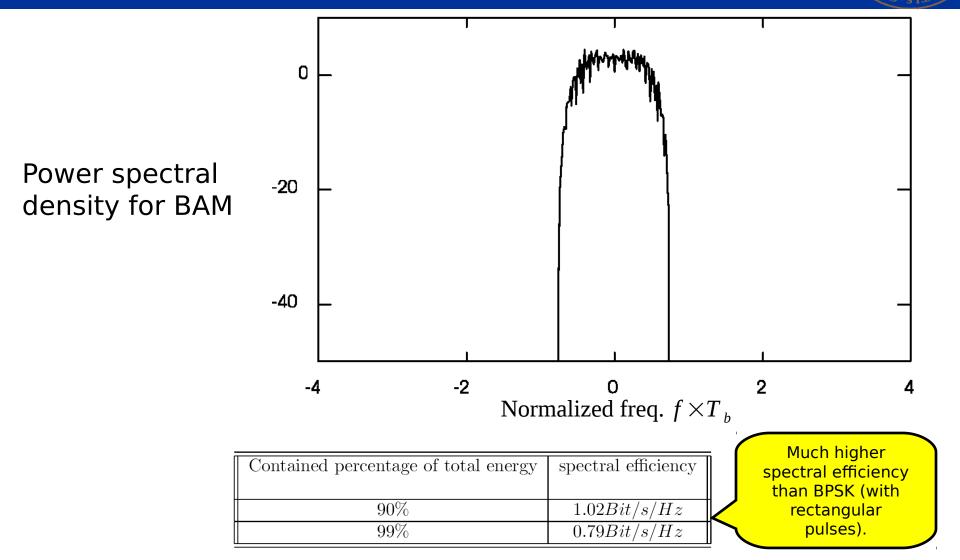
Complex representation



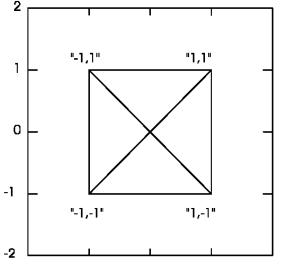
Signal constellation diagram



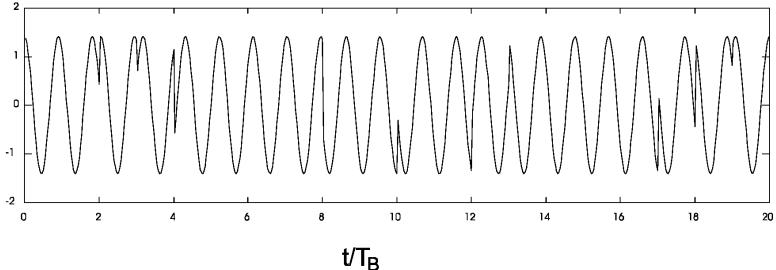
Binary phase-shift keying (BPSK) Raised-cosine pulses (roll-off 0.5)



Quaternary PSK (QPSK or 4-PSK) Rectangular pulses

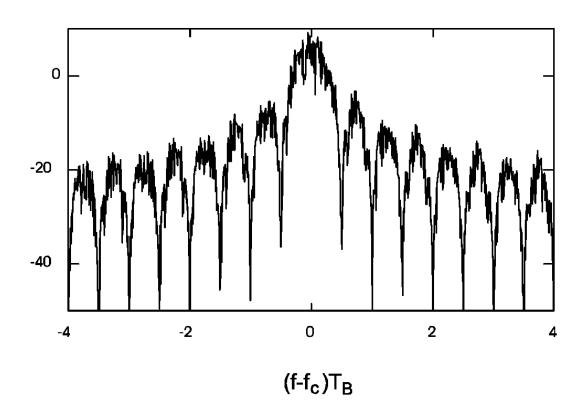


Radio signal



Quaternary PSK (QPSK or 4-PSK) Rectangular pulses

Power spectral density for QPSK

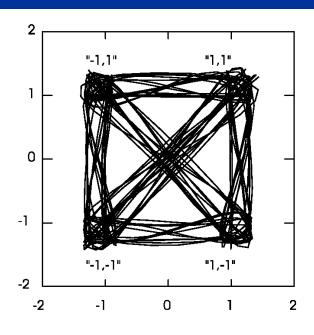


Contained percentage of total energy	spectral efficiency
0.004	1 10 D'1 / /II
90%	1,18Bit/s/Hz $0.10Bit/s/Hz$

Twice the spectrum efficiency of BPSK (with rect. pulses).
TWO bits/pulse instead of one.

Quadrature ampl.-modulation (QAM) Root raised-cos pulses (roll-off 0.5)

Complex representation



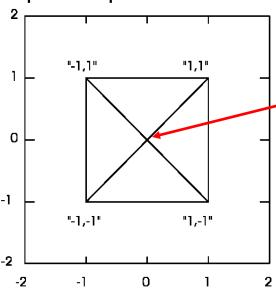
Contained percentage of total energy	spectral efficiency	Ī
90%	2.04Bit/s/Hz	$\ $
99%	1.58Bit/s/Hz	Ħ

Much higher spectral efficiency than QPSK (with rectangular pulses).

Amplitude variations The problem

Signals with high amplitude variations leads to less efficient amplifiers.

Complex representation of QPSK

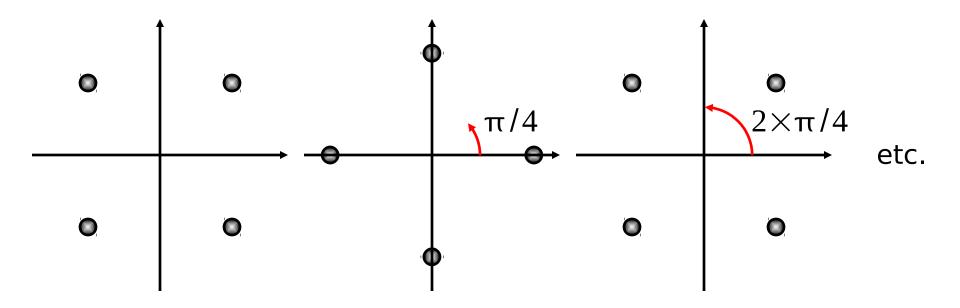


It is a problem that the signal passes through the origin, where the amplitude is ZERO. (Infinite amplitude variation.)

Can we solve this problem in a simple way?

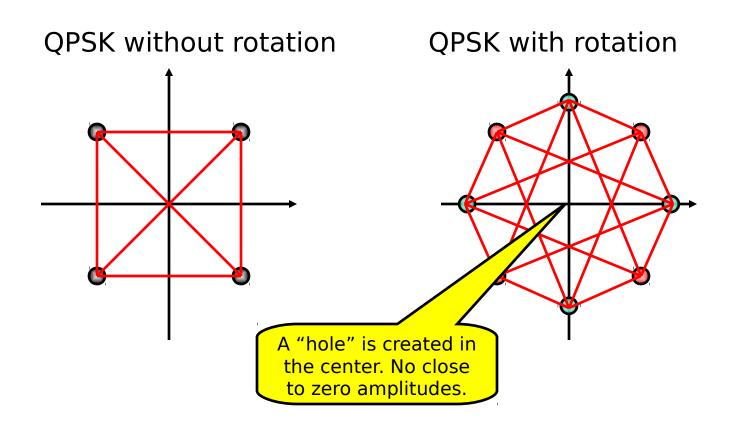
Amplitude variations A solution

Let's rotate the signal constellation diagram for each transmitted symbol!

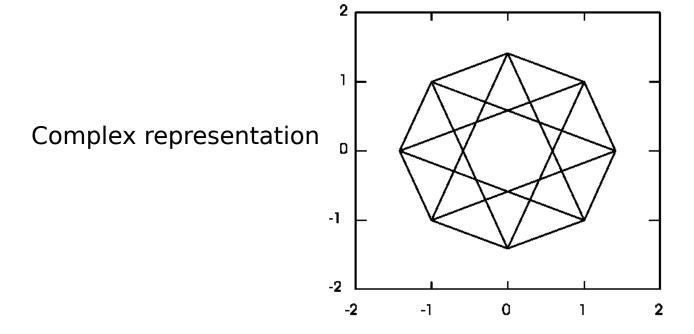


Amplitude variations A solution

Looking at the complex representation ...



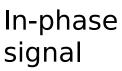
$\pi/4$ - Differential QPSK (DQPSK)

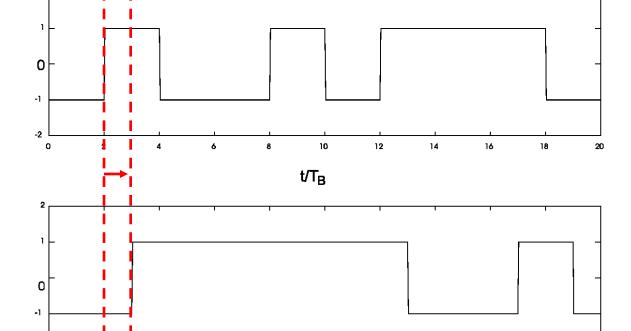


Still uses the same rectangular pulses as QPSK - the power spectral density and the spectral efficiency are the same.

This modulation type is used in several standards for mobile communications (due to it's low amplitude variations).

Offset QPSK (OQPSK) Rectangular pulses





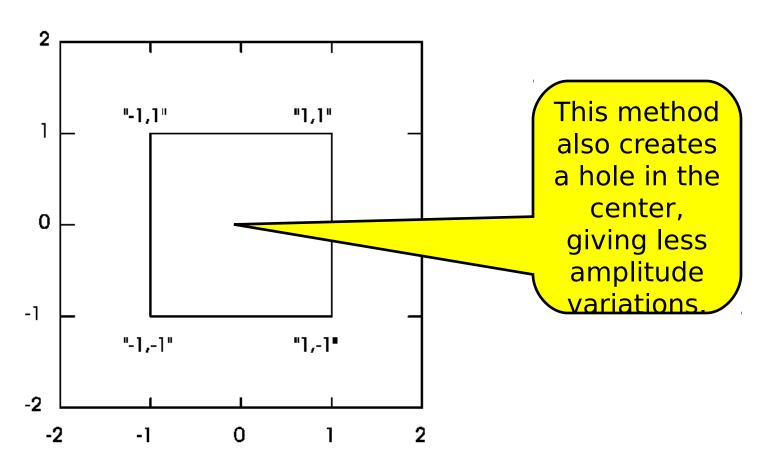
t/T_B

Quadrature signal

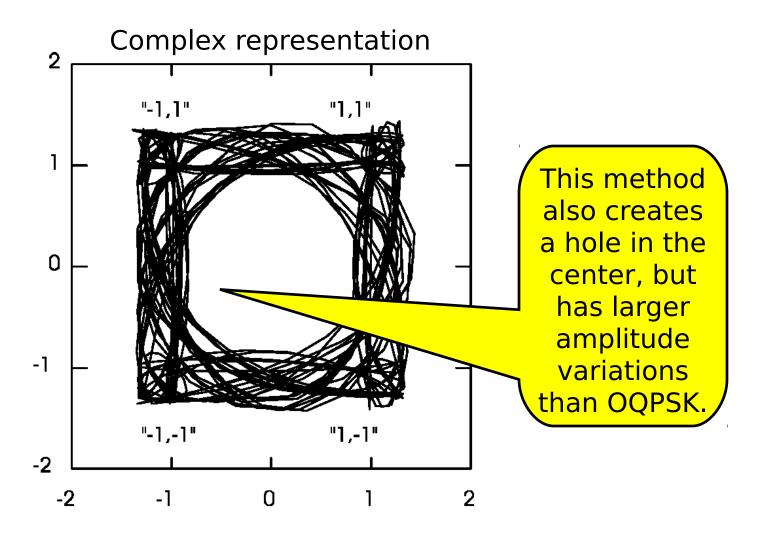
There is **one bit-time** offset between the in-pase and the quadrature part of the signal (a delay on the Q channel). This makes the transitions between pulses take place at different times!

Offset QPSK Rectangular pulses

Complex representation



Offset QAM (OQAM) Raised-cosine pulses



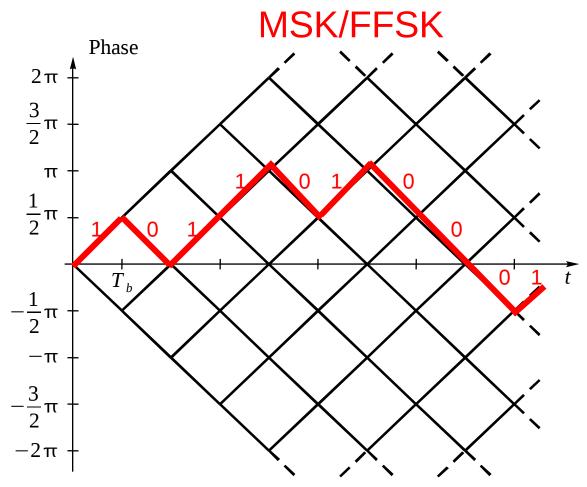
Continuous-phase modulation

Basic idea:

- Keep amplitude constant
- Change phase continuously

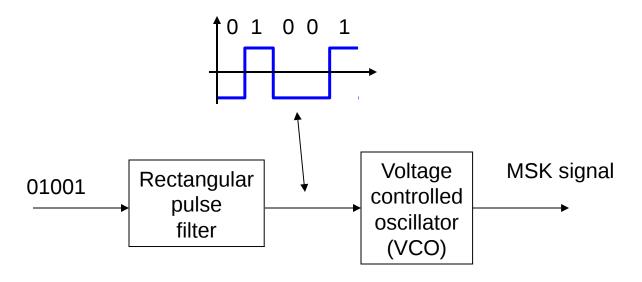
In this particular example we change the phase in a piecewise linear fashion by $+/- \pi/2$, depending on the data transmitted.

This type of modulation — can be interpreted both as phase and frequency modulation. It is called MSK (minimum shift keying) or FFSK (fast frequency shift keying).



Minimum shift keying (MSK)

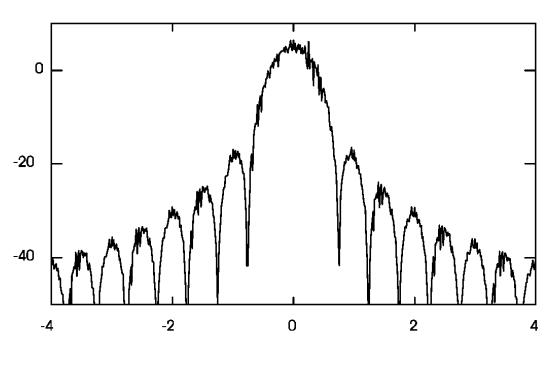
Simple MSK implementation



Minimum shift keying (MSK)

39

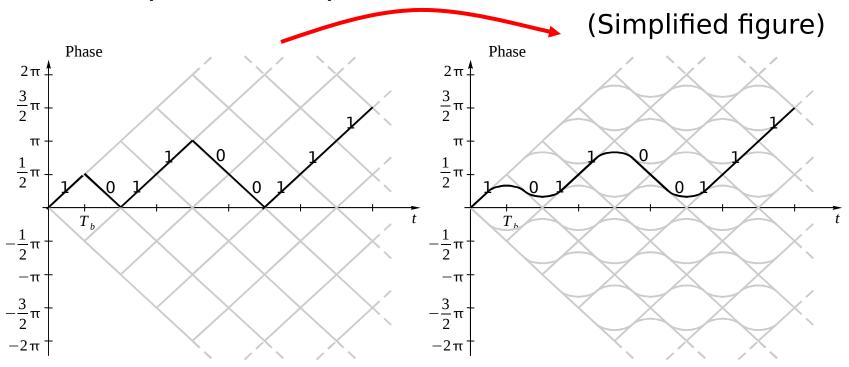
Power spectral density of MSK



 $(f-f_c)T_B$

Contained percentage of total energy	spectral efficiency
90 %	$1,29 \; \mathrm{Bit} \; / \; \mathrm{s} \; / \; \mathrm{Hz}$
99~%	$0.85~\mathrm{Bit}$ / s / Hz

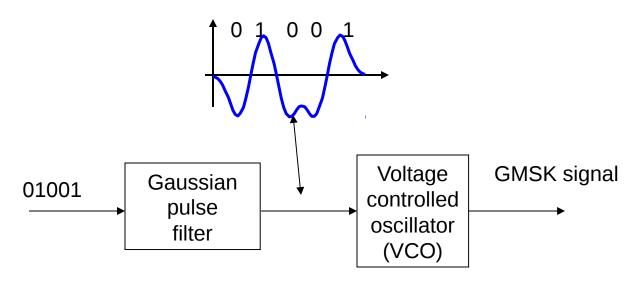
Further improvement of the phase: Remove 'corners'



MSK (Rectangular pulse filter)

Gaussian filtered MSK - GMSK (Gaussian pulse filter)

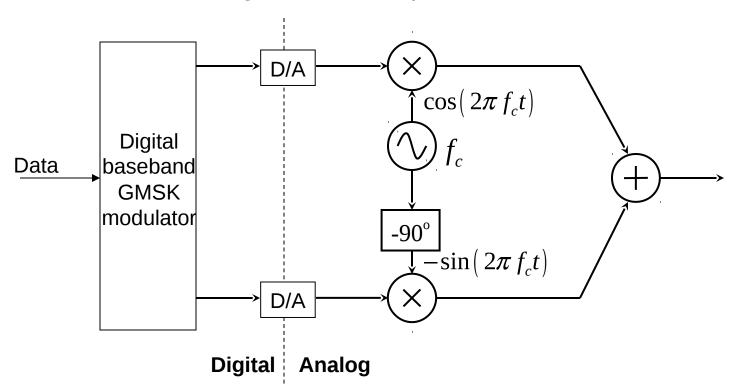
Simple GMSK implementation



When implemented this "simple" way, it is usually called Gaussian filtered frequency shift keying (GFSK).

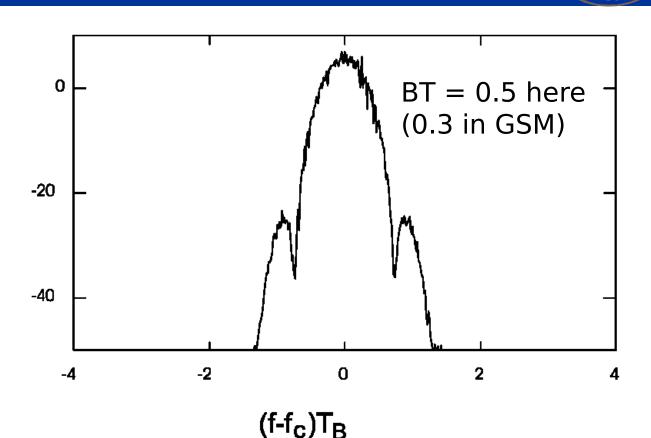
GSFK is used in e.g. Bluetooth.

Digital GMSK implementation



This is a more precise implementation of GMSK, which is used in e.g. GSM.

Power spectral density of GMSK.



How do we use all these spectral efficiencies?

Example: Assume that we want to use MSK to transmit 50 kbit/sec, and want to know the required transmission bandwidth.

Take a look at the spectral efficiency table:

Contained percentage of total energy	spectral efficiency
90 %	1,29 Bit / s / Hz
99 %	0,85 Bit / s / Hz

The 90% and 99% bandwidths become:

$$B_{90\%} = 50000/1.29 = 38.8 \text{ kHz}$$

$$B_{99\%} = 50000 / 0.85 = 58.8 \text{ kHz}$$

Summary

	Modulation method	spectral efficiency	spectral efficiency
BPSK with root-raised ——cosine pulses		for 90 $\%$ of	for 99 % of
		total energy	total energy
		Bit / s / Hz	Bit / s / Hz
	BPSK	0,59	0,05
	\rightarrow BAM (α =0.5)	1,02	0,79
	QPSK, OQPSK,	1,18	0,10
	MSK	1,29	0,85
	$GMSK (B_G T= 0.5)$	1,45	0,97
	QAM ($\alpha = 0.5$)	2,04	1,58

TABLE 11.1 in textbook.