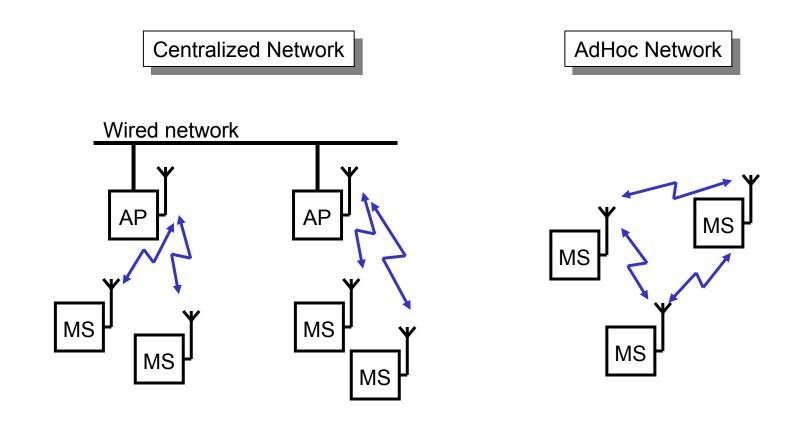

RADIO SYSTEMS - ETIN15

Lecture no: 12

Wireless LAN


Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se

Centralized and AdHoc networks

Centralized and AdHoc Networks

2013-05-07

Infrastructure and AdHoc Networks

- Some issues to consider:
 - Centralized networks
 - Integration with wired LAN
 - Network planning (access points)
 - Interoperability
 - Roaming and handover between access points
 - Security / authentication
 - Power management
 - AdHoc networks
 - Multi-hop and routing
 - Quality of service
 - Interoperability
 - Security / authentication
 - Power management

Error control and ARQ

Error-correcting and Error-detecting Codes

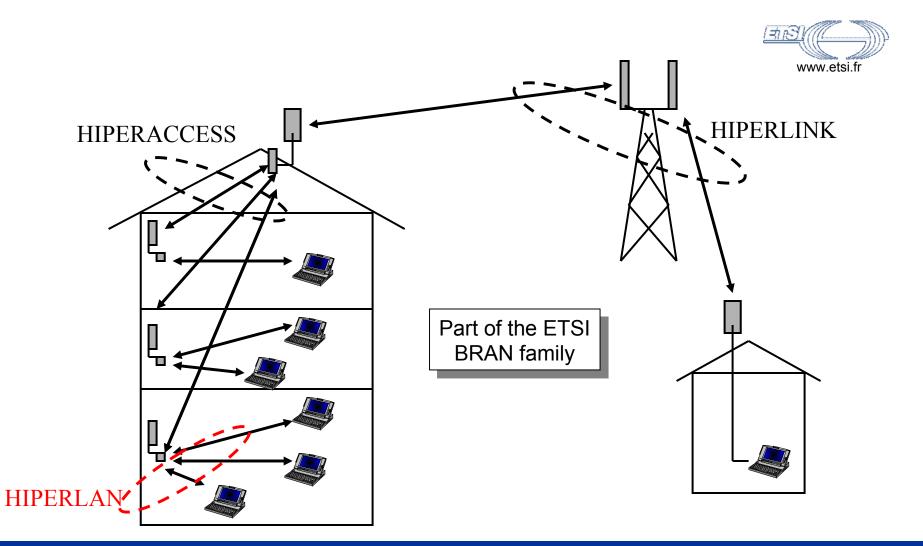
- In wireless systems we need error-correcting and error-detecting codes
- The quality of the wireless channel changes with time and we need to safeguard our data.
 - Data transmitted during a fading dip can (if the coding scheme is properly designed) be recovered by an error-correcting code.
- To reach very low error rates we need error detection to trap incorrectly decoded data.

Automatic Repeat Request (ARQ)

- Using error-detection codes we can reduce the error rate by applying an ARQ scheme.
- ARQ is usually not an option for time critical data over 'slow' channels, such as real-time audio and video.
- For high efficiency, ARQ schemes for wireless channels need to be more intricate than the ones used on wired channels
 - This is due to the fading nature of wireless channels

Digital transmission in WLANs

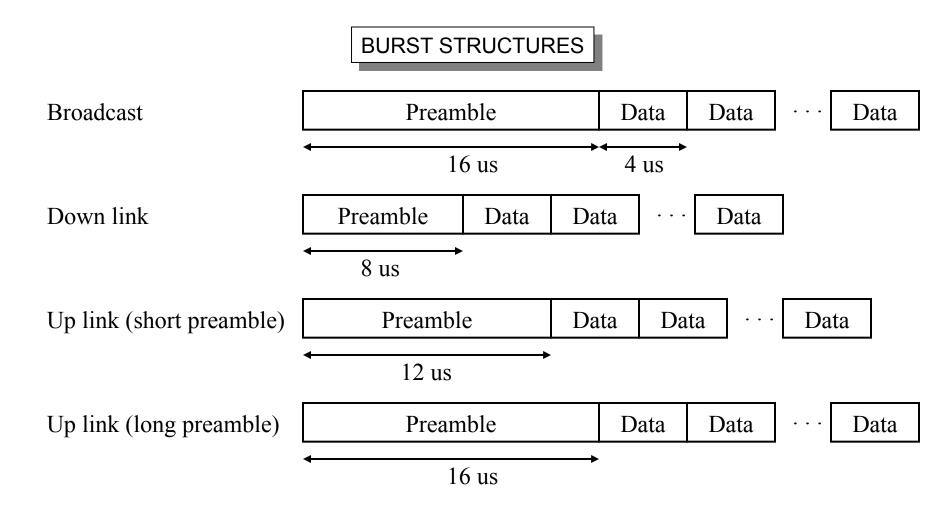
Some WLANs

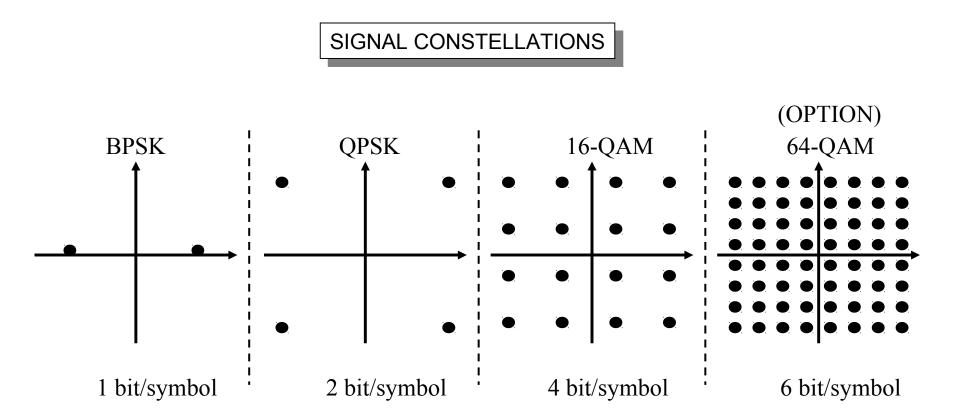

Wireless LAN standards and specifications

Wireless LAN Standards and Specifications

- Some of the available standards and specifications
 - ETSI
 - HIPERLAN/2
 - IEEE
 - 802.11
 - 802.11a
 - 802.11b
 - 802.11g
 - 802.11n
 - BlueTooth SIG
 - BlueTooth

ETSI - HIPERLAN/2




2013-05-07

ETSI - HIPERLAN/2

- Digital transmission
 - OFDM (multicarrier) with sampling rate 20 MHz
 - 5.150-5.350 GHz & 5.470-5.725 GHz
 - 48 data carriers + 4 pilot carriers
 - Carrier spacing 0.3125 MHz
 - Symbol length 4 us (0.8 us cyclic prefix)
 - Range < 150 m.
 - TDMA/TDD
- Syncronization
 - Broadcast (base => all). Preamble 16 us.
 - Downlink (base => terminal). Preamble 8 us.
 - Uplink (teminal => base). Short preamble 12 us and long preamble 16 us.

ETSI - HIPERLAN/2

TRANSMISSION MODES

	-		
Sig.const	Code	Databit/symbol	Data rate
BPSK	1/2	24	6 Mbit/s
BPSK	3/4	36	9 Mbit/s
QPSK	1/2	48	12 Mbit/s
QPSK	3/4	72	18 Mbit/s
16QAM	9/16	108	27 Mbit/s
16QAM	3/4	144	36 Mbit/s
64QAM	3/4	216	54 Mbit/s

IEEE - 802.11

- 802.11-1997
 - PHY layer
 - diffused infrared in baseband

- DSSS and FHSS (50 hops/sec) in 2.4 GHz ISM band
- 1 and 2 Mbps data rate
- MAC layer
 - Two network architectures: Infrastructure Network and Ad-Hoc Network
 - Primary services: Data transfer, Association, Reassociation, Authentication, Privacy, and Power Management
- MISSING
 - AP-to-AP coordination for roaming, Data frame mapping, Confomance test

IEEE - 802.11

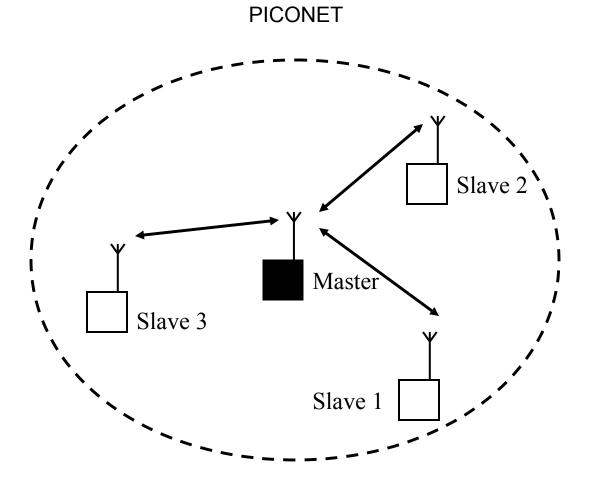
- 802.11a-1999 (supplement to 802.11-1997)
 - New PHY (and MAC) layer for 802.11
 - 5 GHz band
 - Essentially the same physical layer (OFDM) as HIPERLAN/2
 - 6-54 Mbps data rate
- 802.11b-1999 (supplement to 802.11-1997)
 - New PHY (and MAC) layer for 802.11
 - 2.4 GHz band
 - DSSS based physical layer
 - 11 Mbps data rate

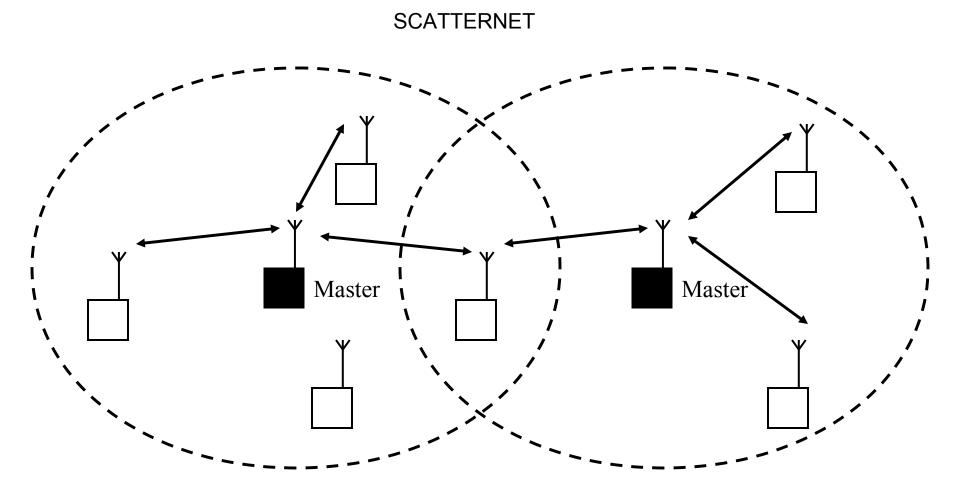
IEEE - 802.11

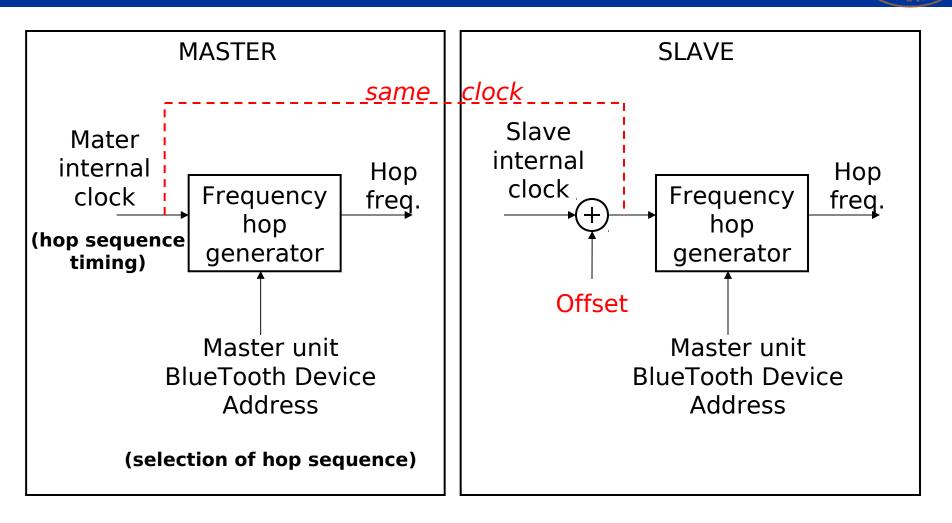
- 802.11g-2003 (supplement to 802.11-1997)
 - Same PHY layer as 802.11a
 - 2.4 GHz band
 - New MAC layer
 - 6-54 Mbps data rate
- 802.11n (under development)
 - Up to 500 Mbit/sec
 - Proposal based on MIMO technology

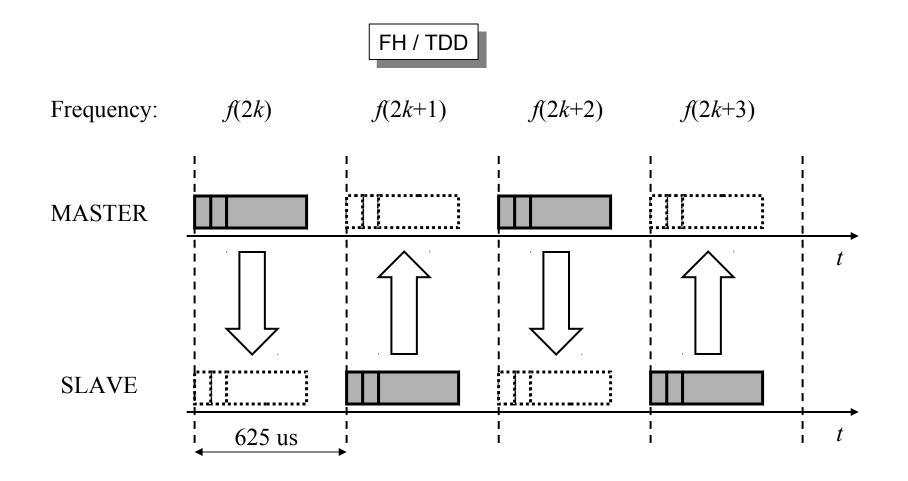
IEEE 802.11 - a bigger family

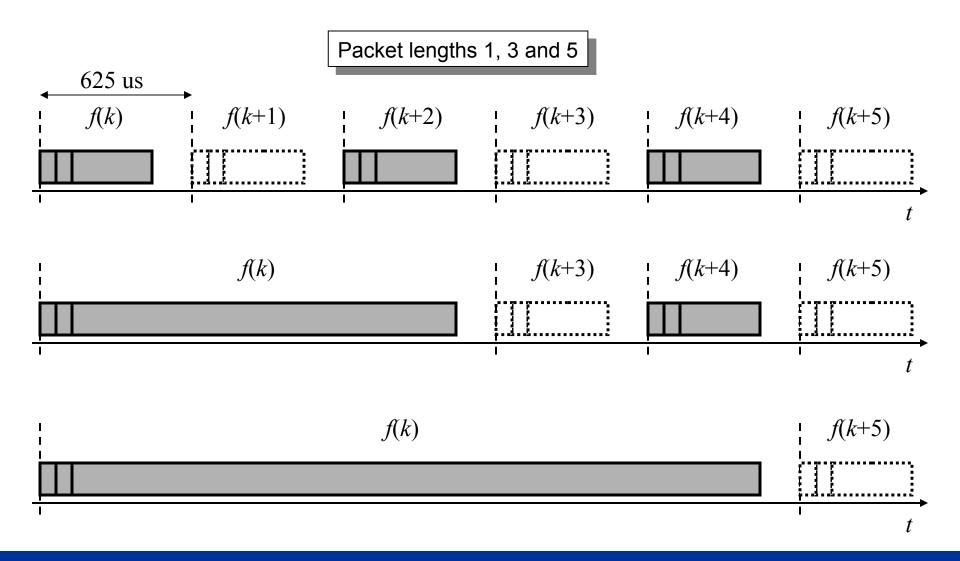
- IEEE 802.11 The original 1 Mbit/s and 2 Mbit/s, 2.4 GHz RF and IR standard
- IEEE 802.11a 54 Mbit/s, 5 GHz standard (1999, shipping products in 2001)
- IEEE 802.11b Enhancements to 802.11 to support 5.5 and 11 Mbit/s (1999)
- IEEE 802.11d international (country-to-country) roaming extensionsNew countries
- IEEE 802.11e Enhancements: QoS, including packet bursting
- IEEE 802.11F Inter-Access Point Protocol (IAPP)
- IEEE 802.11g 54 Mbit/s, 2.4 GHz standard (backwards compatible with b) (2003)
- IEEE 802.11h 5 GHz spectrum, Dynamic Channel/Frequency Selection (DCS/DFS) and Transmit Power Control (TPC) for European compatibility
- IEEE 802.11i (ratified 24 June 2004) Enhanced security
- IEEE 802.11j Extensions for Japan
- IEEE 802.11k Radio resource measurements
- IEEE 802.11n Higher throughput improvements
- IEEE 802.11p WAVE Wireless Access for the Vehicular Environment (such as ambulances and passenger cars)
- IEEE 802.11r Fast roaming
- IEEE 802.11s Wireless mesh networking
- IEEE 802.11T Wireless Performance Prediction (WPP) test methods and metrics
- IEEE 802.11u Interworking with non-802 networks (e.g., cellular)
- IEEE 802.11v Wireless network management

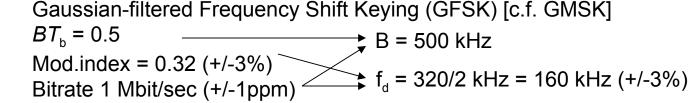

... and more!

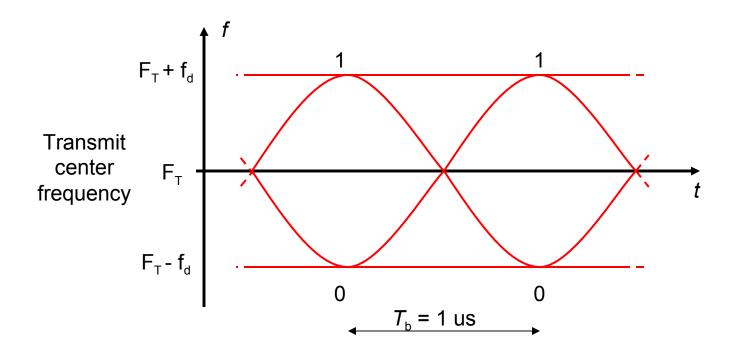

- FHSS in the 2.4 GHz band
 - max 1600 hops/sec (much faster than IEEE 802.11 FHSS)
 - 1 MHz channels
 - 79 frequency channels
- Modulation
 - Version 1.x
 - GFSK (BT=0.5)
 - 1 Mbps (raw)
 - Version 2.x
 - Additionally differential 4PSK and 8PSK
 - 2 & 3 Mbps
- Range
 - 10 cm -- 10 m (for Class 2)






Bluetooth "





2013-05-07

The second secon

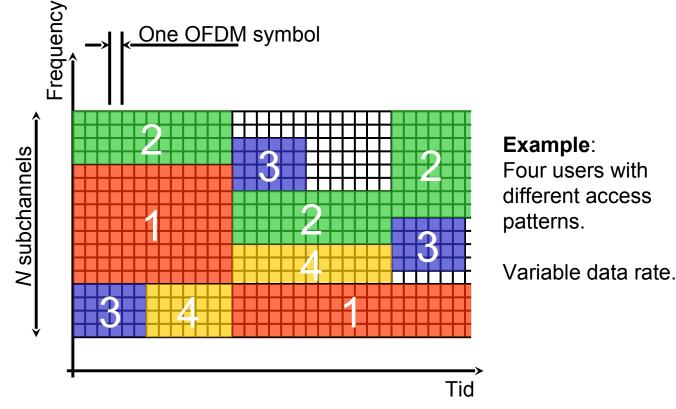
- Synchronous connection oriented (SCO)
 - Synchronous transmission
 - Symmetric data rate
 - Reserved time slots
 - Intended for voice
 - No retransmission
- Asymmetric connection less (ACL)
 - Asynchronous transmission
 - Used for asymmetric communication
 - Retransmission used (Go-back-1 ARQ)

These are the basic packet types.

Bluetooth evolution

- Bluetooth has evolved to newer versions, e.g.
 - Version 2.0 + EDR
 - Main feature: (optional) higher data rate (3 Mbit/sec)
 - Version 2.1 + EDR
 - Main feature: secure simple pairing of devices
 - Version 3.0 + HS
 - Main feature: up to 24 Mbit/sec by using 802.11 MAC/PHY

A few words about WiMAX



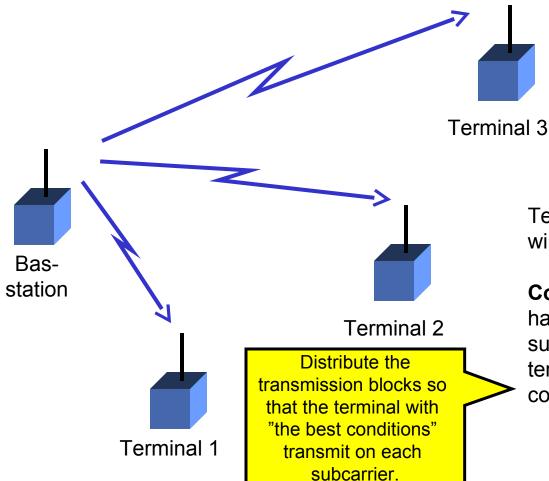
OFDM based multiple access

- Traditional multiple access based on sharing resources in time (TDMA), frequency (FDMA) or code (CDMA).
- The two-dimensional time-frequency grid of OFDM opens up for a more advanced sharing of the resourses.
- One such system was developed for the ETSI starndardization "contest" in 1997 when WCDMA was adopted. Similar systems can be found in the LTE (log-term evolution) in 3GPP.
- Another variation on the theme is found in the WiMAX (IEEE802.16 systems).

OFDM based multiple access (cont.)

• In OFDM we can place transmission blocks in an arbitrary pattern in time and frequency:

Has some similarities to CDMA, since the data rate is variable.


2013-05-07

OFDM based multiple access (cont.)

- Pros:
 - We can get variable bandwidth/data rate by changing the transmission block sizes. (BOD – bandwidth on demand)
 - By using several smaller transmission blocks spaced in frequency we can exploit frequency diversity even at low data rates.
 - The nice orthogonality properties of OFDM can give high data rates especially in the down-link.
- Cons:
 - Difficult to use in the up-link since all terminals need to be very well synchronized if we want to maintain orthogonality.

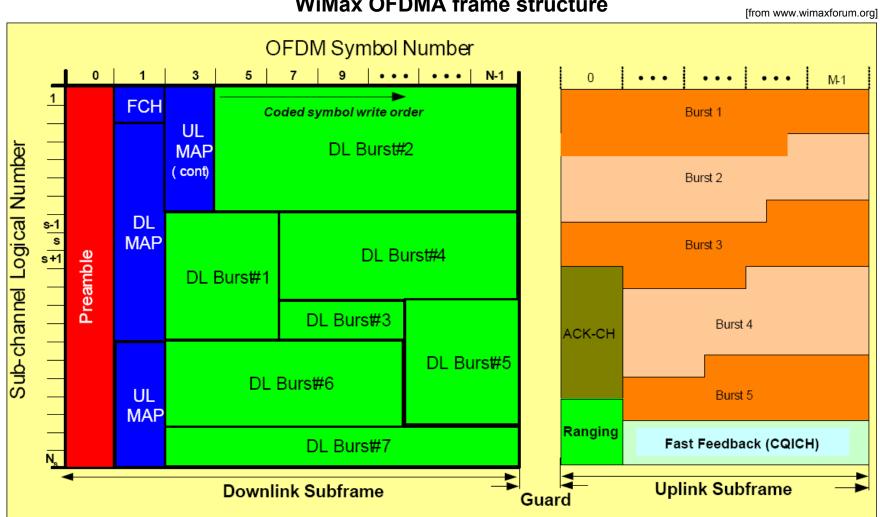
OFDM – advanced scheduling

Terminals at different positions will have different channels.

Conclusion: If one terminal has a fading dip at a certain subcarrier, then some other terminal may have good conditions at this subcarrier.

2013-05-07

	802.16	802.16a HiperMAN	802.16-200 4	802.16e-2005
Launched	Dec. 2001	Jan. 2003 (802.16a)	June 2004	Dec. 2005
Frequency band	10-66 GHz	< 11 GHz	< 11 GHz	< 6 GHz
Radio environment	Only LOS	Non-LOS	Non-LOS	Non-LOS and mobile
Bit rates	32-134 Mbps	<= 75 Mbps	<= 75 Mbps	<= 15 Mbps
	802.16	802.16a HiperMAN	802.16-200 4	802.16e-2005


A few sOFDMA (scalable OFDMA) parameters in WiMax

Parameters	Values			
System Channel Bandwidth (MHz)	1.25	5	10	20
Sampling Frequency (F _p in MHz)	1.4	5.6	11.2	22.4
FFT Size (N _{FFT)}	128	512	1024	2048
Number of Sub-Channels	2	8	16	32
Sub-Carrier Frequency Spacing	10.94 kHz			
Useful Symbol Time $(T_b = 1/f)$	91.4 microseconds			
Guard Time ($T_g = T_b/8$)	11.4 microseconds			
OFDMA Symbol Duration $(T_s = T_b + T_g)$	102.9 microseconds			
Number of OFDMA Symbols (5 ms Frame)	48			

[from www.wimaxforum.org]

Scalable OFDMA means that the number of OFDM subcarriers (N_{FFT}) changes with the bandwidth so that the distance (in Hz) between subcarriers remain constant. This is favourable when implementing transmitters and receivers.

2013-05-07

WiMax OFDMA frame structure

2013-05-07

		DL	UL
Modula	tion	QPSK, 16QAM, 64QAM	QPSK,16QAM, 64QAM
Code Rate	CC	1/2, 2/3, 3/4, 5/6	1/2, 2/3, 5/6
	CTC	1/2, 2/3, 3/4, 5/6	1/2, 2/3, 5/6
	Repetition	x2, x4, x6	x2, x4, x6

[from www.wimaxforum.org]

- CC - Convolutional Code CTC
 - Convolutional Turbo Code

LTE basic transmission principles (OFDMA) show strong similarities with WiMAX ... but they are entirely different animals in many other respects.

LEARN MORE:

ETTN15 Modern Wireless Systems - LTE and Beyond