

Lecture no: 10

Multi-carrier and Multiple antennas

Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se

Contents

- Multicarrier systems
 - History of multicarrier
 - Modulation/demodulation
 - Equalization
 - Performance
- Multiple antenna systems
 - Different configuratuons
 - Diversity gains
 - Datarates using MIMO (capacity)

Multi-carrier or OFDM – orthogonal frequencydivision multiplexing

Single/multi-carrier

2013-05-02

1950's: Few subcarriers, with non-overlapping spectra

• Military systems, e.g. the Kineplex-modem

History and evolution [2]

1960's: Subcarriers with overlapping spectra

Increased subchannel density and increased data rate.

History and evolution [3]

1970's: Digital modulation of subcarriers

History and evolution [4]

1980's: Improved digital circuits increses interest

2013-05-02

History and evolution [5]

- **1990's**: Commercial applications appear
 - Increased interest for OFDM in wireless applications
 - First applications in broadcasting (Audio/Video)
 - One of the candidates for UMTS (Beta proposal)
 - Applied in wireless LANs
- 2000's: One of the really hot technologies
 - 54 Mbps and beyond WLANs (based on OFDM) hit the mass market (IEEE802.11g/n)
 - OFDM is the technology used when improving and moving beyond current 3G systems (LTE – long term evolution)

Transmitters and receivers An N-subcarrier transmitter

2013-05-02

Transmitters and receivers ... through the channel ...

As long as the CP is longer than the delay spread of the channel, $LT_{samp} > T_{ch}$, it will absorb the ISI.

By removing the CP in the receiver, the transmission becomes ISI free.

2013-05-02

Transmitters and receivers N-subcarrier receiver

2013-05-02

Transmitters and receivers Modulation spectrum [1]

2013-05-02

Transmitters and receivers Modulation spectrum [2]

The distance between each subcarrier becomes $1/(NT_{samp})$ which is the same as the 3 dB bandwidth of the individual subcarriers. Using all *N* subcarriers (8 in this case) we get:

The total modulation spectrum is a sum of the individual subcarrier spectra (assuming independent data on them).

2013-05-02

Transmitters and receivers Modulation spectrum [3]

2013-05-02

Transmitters and receivers Simplified model

100-11 100-11

Simplified model under ideal conditions (no fading and sufficient CP)

Total filter in the signal path:

$$h_{tot}(t) = h_{TX}(t) * h_{ch}(t) * h_{RX}(t)$$

$$H_{tot}(f) = H_{TX}(f) \times H_{ch}(f) \times H_{RX}(f)$$

Given that subcarrier *n* is transmitted at frequency f_n the attenuations become: $H_{n,k} = H_{tot}(f_n)$

2013-05-02

Transmitters and receivers Focus on one subchannel

• Simple equalization of each subchannel: Back-rotate and scale

Coded OFDM (CODFM) Uncoded performance

PROBLEM:

- Only one fading tap per subchannel => NO DIVERSITY => POOR PERFORMANCE
- The diversity is in there ... but additional techniques are needed to exploit it!

SOLUTION:

- Spreading the information (data) across several subcarriers or OFDM symbols
- This can be done using interleaving and coding => Coded OFDM (CODFM)

2013-05-02

Coded OFDM (CODFM) Channel correlation

Channel attenuations are correlated in the time/frequency grid.

If we spread each bit of information over several well separated points in the OFDM time/frequency grid, the same "bit" is is received over several "one tap" fading channels.

Combining these in the receiver, we obtain diversity.

Coded OFDM (CODFM) Coding and interleaving

2013-05-02

Coded OFDM (CODFM) Diversity

The better the coding and interleaving scheme, the larger the obtained diversity order.

Multiple antenna systems or MIMO – multiple input/multiple output

A simple model: Superposition of received waves [Movement -> fading]

Fading -> Poor performance

System model [3]

An improvement: Antenna diversity

Lobe-forming at transmitter

Several input signals

2013-05-02

Several output signals

2013-05-02

Note that the three channels are separated spatially and can therefore use the same bandwidth! We have "trippled" the channel capacity.

2013-05-02

100 PT 10

The "general" case with M_{T} TX antennas and M_{R} RX antennas:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{M_R} \end{bmatrix} = \begin{bmatrix} h_{1,1} & h_{1,2} & \cdots & h_{1,M_T} \\ h_{2,1} & h_{2,2} & \cdots & h_{2,M_T} \\ \vdots & \vdots & \ddots & \vdots \\ h_{M_R,1} & h_{M_R,2} & \cdots & h_{M_R,M_T} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{M_T} \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_{M_R} \end{bmatrix} = \mathbf{H}\mathbf{x} + \mathbf{n}$$

Some fundamental questions:

- How do we model the channel matrix **H**?

- How do we model the noise (interference) **n**? We will see that these have a large impact on what we can obtain.

What started the interest in MIMO?

100 PT 10

J.H. Winters. On the Capacity of Radio Communication Systems with Diversity in Rayleigh Fading Environment. IEEE JSAC, vol. SAC-5, no. 5, June 1987.

Model

Equal number of RX and TX antennas, $M_{\rm T} = M_{\rm R} = M$.

- **H** Independent Rayleigh fading. [i.i.d. complex Gaussian variables].
- **n** I.i.d complex Gaussian variables.

Findings

Linear processing at receiver: Up to **M /2 channels**, each with the same data rate as a single channel.

Non-linear processing at receiver: Up to **M** channels, each with the same data rate as a single channel.

Capacity - No fading & AWGN [1]

Singular value decomposition of the (fixed) channel H:

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n} = \mathbf{Q}_1 \boldsymbol{\Sigma} \mathbf{Q}_2^H \mathbf{x} + \mathbf{n}$$

where $\mathbf{Q}_1 (M_R \times M_R)$ and $\mathbf{Q}_2 (M_T \times M_T)$ are unitary matrices and $\Sigma (M_R \times M_T)$ is a matrix containing the singular values on its diagonal.

Capacity - No fading & AWGN [2]

What have we obtained?

singular values $r = rank(\mathbf{H})$.

(+ channels with $\mu_k = 0$)

Capacity - No fading & AWGN [3]

Shannon: The total capacity of parallel independent channels is the sum of their individual capacities.

$$C_k = \log_2(1 + \text{SNR}_k)$$

$$C = \sum_{k} C_{k} = \sum_{k} \log_{2} \left(1 + \text{SNR}_{k} \right)$$

Equal power distribution (channel not known at TX):

Constant dep. on e.g. TX power and noise.

$$C = \sum_{k} C_{k} = \sum_{k} \log_{2} \left(1 + \alpha \, \mu_{k}^{2} \right) = \log_{2} \prod_{k=1}^{r} \left(1 + \alpha \, \mu_{k}^{2} \right)$$

Capacity - No fading & AWGN [4]

A neat trick: $\det\left(\mathbf{I}_{M_{R}}+\alpha \mathbf{H}\mathbf{H}^{H}\right)=\det\left(\mathbf{Q}_{1}\mathbf{Q}_{1}^{H}+\alpha \mathbf{Q}_{1}\boldsymbol{\Sigma}\mathbf{Q}_{2}^{H}\mathbf{Q}_{2}\boldsymbol{\Sigma}^{H}\mathbf{Q}_{1}^{H}\right)$ $= \det \mathbf{Q}_{1} \left(\mathbf{I}_{M_{R}} + \alpha \boldsymbol{\Sigma} \, \mathbf{Q}_{2}^{H} \, \mathbf{Q}_{2} \, \boldsymbol{\Sigma}^{H} \right) \mathbf{Q}_{1}^{H}$ $= \det \left(\mathbf{I}_{M_{R}} + \alpha \boldsymbol{\Sigma} \, \boldsymbol{\Sigma}^{H} \right)$ $1 + \alpha \, \mu_{1}^{2}$ \vdots $1 + \alpha \, \mu_{r}^{2}$ $1 + \alpha \, \mu_{r}^{2}$ $=\prod_{k=1}^{r} \left(1+\alpha \mu_k^2\right)$

2013-05-02

Capacity - No fading & AWGN [5]

CONCLUSION:

$$C = \log_2 \prod_{k=1}^r \left(1 + \alpha \, \mu_k^2 \right) = \log_2 \det \left(\mathbf{I}_{M_R} + \alpha \, \mathbf{H} \mathbf{H}^H \right) \, [\text{bit/sec/Hz}]$$

Normalization: ρ - SNR at each receiver branch

$$C = \log_2 \det \left(\mathbf{I}_{M_R} + \frac{\rho}{M_T} \mathbf{H} \mathbf{H}^H \right)$$

This leads to the fact that we can increase data rate by increasing the number of antennas, without using more transmit power.

This relation is also derived in *e.g*

G.J. Foschini and M.J. Gans. On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas. Wireless Personal Communications, no 6, pp. 311-335, 1998.

Summary

- Multi-carrier technology (OFDM) reduces the effect of intersymbol interference (as compared to single carrier).
- Only **simple equalization** is required in an OFDM receiver.
- Modulation/demodulation can be done using Fast Fourier Transforms (FFTs).
- Multiple antenna systems increase our ability to obtain **diversity gains**.
- With MIMO systems we can increase the datarate by using more antennas, without increasing transmit power or bandwidth.