
Selected answers*

Problem set 4

Wireless Communications, 2nd Ed.

13.1 Impact of diversity
Correction: The problem erroneously points to Eq. (13.35) in the textbook. It should be Eq. (13.38).

The general approximation of average BER (called SER in the book, but for binary modulation it is the 
same) is

(1)

where  is the number of (independently fading) receive antennas. Our average SNR (average
) is 20 dB.

a) Using only one receive antenna ( ) we get .

b) With three receive antennas ( ) we get 

c) Reaching a BER of  with only one receive antenna would require an average SNR 
of , i.e. 42 dB more than if we 
use three receive antennas.

[13.2] Adding extra antennas
This entire problem can be solved quickly by studying figures 13.10 and 13.11 in the textbook. The 
latter figure is for MSK but, as our investigations show, MSK has the same BER as QPSK and BPSK … of 
which the latter is the one used in this problem. For simplicity, these figures are repeated here (solid 
line RSSI, dashed lines MRC):

    

a) Inspecting the outage figure (left – solid horizontal line) we see that 1% outage is reached at 
fading margins (how far down is the 1% level) 21 dB for 1 antenna, 10 dB (RSSI) or 8 dB (MRC) 
for 2 antennas, and 7 dB (RSSI) or 4 dB (MRC) for 3 antennas. This constitutes diversity gains 
(difference compared to only one antenna) of 11 dB (RSSI) or 13 dB (MRC) for two antennas 

* Note: Solutions provided here are less detailed than the ones expected during the exam. Many steps are excluded.
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and 14 dB (RSSI) or 17 dB (MRC) for three antennas.

b) Here we inspect the average BER figure at  (right – solid horizontal line). We 

find that the required average SNR, , has to be 25 dB for one antenna, 14 dB (RSSI) or 
13 dB (MRC) for 2 antennas, and 11 dB (RSSI) or 8 dB (MRC) for 3 antennas. This constitutes 
diversity gains (improvement over the 1-antenna case) of 11 dB (RSS) or 12 dB (MRC) for 2 
antennas and 14 dB (RSSI) or 17 dB (MRC) for 3 antennas.

c) If we perform a) and b) for 10% outage and average BER of  (dashed horizontal lines in 
the figures), respectively, we see that the corresponding diversity gains are smaller than in a) 
and b). Since higher diversity orders means a steeper slope on the error curves, the gap 
(diversity gains) become larger for higher SNRs or, equivalently, for lower outages and lower 
average BERs.

13.3 Fading margin
We have independent fading with an exponential exponential distribution

, (1)

on the received SNRs, , and the average SNR, , is the same for both antennas. The specified outage 
probability is .

a) When one antenna is used, the outage probability for a fading margin  becomes (the outage
threshold is  times lower than the average SNR, according to the definition of fading margin)

(2)

b) Since the fading is independent, and RSSI selection is used, the probability that the received 
signal is below the outage threshold is

(3)

c) For an outage probability of 1% in both cases,  the required fading 
margins become

(4)

and

(5)

The diversity gain (how much less fading margin we need) when using two antennas instead of 
one is .

13.6 The Alamouti scheme
a) The output at the receiver side in the first interval is
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(1)

and in the second interval

. (2)

b) The proposed operations on  and  gives

(3)

and

, (4)

which means that we have achieved diversity order TWO (by adding the channel powers from 
both  and  in the expressions) without the need to know the channel at the transmitter 
side and using only a single receive antenna.

[13.11] Maximal SNR antenna combining
We know that received power is proportional to signal amplitude squared, but we do not know the 
proportionality constant, which depends on the impedance. Let us therefore just assume that the 
proportionality constant is  (positive and non-zero) and that the signal power on the th antenna is

. With noise power  (this is not the noise power spectral density) on all antennas, the SNR 

on antenna  becomes .

Adding the received signals, with weight  on the signal from the th antenna1, we get a total signal 
amplitude

(1)

which corresponds to an equivalent signal power

(2)

where the proportionality constant  has the same meaning as before. Since the noise from the 
different antennas is independent and weighted by the same coefficients, , we get a total noise 
power

(3)

and an SNR of the combined signal as

(4)

1 It may seem strange to use the complex conjugate  of our coefficients as weights, but it does not change the result 
and will simplify notation in the coming calculations.
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To find the set of coefficients that maximize the combined SNR we can, without loss of generality, 
assume that their square sum is one and that the other constants (  and ) are absorbed into a 
single constant, which we also assume to be one. The SNR-maximizing coefficients  are then given 
by

. (5)

This is a classical maximization problem that can be solved by, e.g., applying the method of Lagrange 
multipliers. To do that, we formulate the Lagrangian

. (6)

After performing the optimization, we obtain the optimal SNR as

(7)

where we recognize the terms  in the last sum as the SNRs we calculated for the 
individual antennas (see above).

14.10 Soft decoding of convolutional code
a) Using -1 and +1 instead of 0 and 1 on trellis labels gives the following trellis stage:

b) When performing soft decoding, we get the following trellis, metrics, and survivors (red):

The survivors are not the same as for the hard decoding presented in Fig. 14.5 in the textbook. 
The dashed path represents a path equally good as one of the other paths. In the second to 
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last trellis stage, two incoming metrics had the same value ( ) and one was 
discarded by the toss of a fair coin.

[14.11] Diversity and hard decoding
Diversity is seen in the slope of the BER curve as SNR increases. If we rewrite the given BER expression 
as

(1)

we see that when the SNR  increases

(2)

and

. (3

The behaviour of the BER is therefore dominated by the lowest power of . This term has the 
power , which gives us the diversity order. Now we only need to combine this with the fact that 
the error correcting capability of a block code with minimum distance  is calculated as

. (4)

This gives us the final result that a code with minimum distance  achieves diversity order

. (5)

16.6 Channel equalization
a) If the channel is equalized with a ZF equalizer, the inverse of the channel is used as a filter, 

namely

. (1)

b) The memory of the channels is 1, since there is only one delay element.

c) A trellis stage for the given channel is

d) Decoding of the five stages gives this trellis, with metrics and survivor(s):
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The maximum-likelihood detected sequence becomes 1 1 0 1 0.

Extra Problems – Batch 2

1. Encoding & decoding
(a) With 64 kbit/sec data rate and  coding, the coded bit rate becomes 128 kbit/sec.

(b) Each 4QAM symbol carries two bits, which gives a symbol rate of 64 ksymb/sec.

(c) Rectangular basis pulses and 99% of the energy gives (Table 11.1 in textbook 4QAM same as 
4PSK) a bandwidth  kHz.

(d) If the channel is memoryless, the only memory in the system is the one in the convolutional 
code, which is of depth 3. With memory 3, we need  states in the Viterbi decoder.

(e) Fully compensating for the doubling of the number of bits by the code would require a signal 
constellation carrying twice as many bits/symbol as the 4QAM, namely 4 bits/symbol. This 
indicates the use of 16QAM.

2. The Viterbi algorithm
(a) For error correcting codes it is the memory of the encoder and the generator sequences.

For channel equalization it is the impulse response of the channel (which implicitly defines the 
memory).

(b) The VA finds the most likely transmitted path/sequence, given the received (noisy) signal.

3. Coding gain in Rayleigh fading channels
(a) Using , in combination with a required average SNR  dB 

(using Slide 37, Lecture 6, or knowing that binary antipodal signalling has the same BER 
characteristic as 4QAM and using eq. (12.52) ), we get an average required

 dB.

(b) The 6 dB coding gain directly translates to a 6 dB reduction in the C/N_0 requirement, i.e.,

 dB.

(c) A rate  code expands the transmission bandwidth by a factor two, hence the 
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bandwidth in (b) is twice that of in (a).

4. Mobile radio link in Rayleigh fading
(a) Solved in Extra Problems Batch 1, but for a BER requirement of . Following the same 

strategy, but for a  requirement, gives  dB and, at  kbit/sec =
 dB,

dBW or  dBm.

(b) Solved in Extra Problems Batch 1, but for a BER requirement of . Following the same 
strategy, but for a  requirement, gives  dB with two antennas and a 
diversity gain of  dB. The corresponding requirement on received power is 
reduced by the same amount to

dBW or  dBm.
(c) To determine the gain by using the Golay code, we need to find the channel bit error rate  

that results in a  bit-error probability after (hard) decoding. Given the parameters of the 
Golay code, the requirement becomes (see Lecture 7, slide 20):

.

This is a sum with 20 terms in it and finding  directly would be quite difficult. Using the fact 
that the total probability (of all terms in th sum from 0 to 23) is 1, we can use

.

This expression “only” contains four terms in the sum and it is quite possible to search for a 
reasonable value on p using a pocket calculator (starting at a guess, e.g.,  and refining 
the result from there). Using this strategy, a reasonable value would be .

Another, less labor intensive but also less accurate, approach would be to exploit the fact that 
the BER expression is a polynomial with lowest degree 4. With a small , the entire expression 
will be dominated by that lowest-degree term (which appears when  in the first sum) 
and the approximation becomes

.

This yields

.

To obtain this uncoded BER over a Rayleigh fading channel with 2ASK, we need dB,
where  is the average energy per code bit on the channel. Since there are 23 code bits per 
11 information bits in the code, the corresponding

.

Comparing this to the  dB's required without coding (in a), the gain is about 21 dB. This also 
translates directly to a 21 dB reduction in required average received power. Hence, the 
required average received power becomes  dB or  dBm.
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(d) Using the Golay code, our point-of-operation in terms of bit-error performance on the channel 
is around . At this level the required  is only about 8 dB (see Fig 13.11 in textbook), 
with two-antenna RSSI selection diversity included. The corresponding  dB 
(correcting for the 11/23 code rate as in (c)). This means that the combined coding and 
antenna diversity gain (compared to a) is  dB, which gives a required average 
received power of  dBW or  dBm.
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