Digital IC-Project and Verification

Place and Route

Deepak Dasalukunte

Outline

• Backend ASIC Design flow
 • General steps
• Input files
• Floorplanning
• Placement
• Clock-synthesis
• Routing

Typical Backend Design Flow

• Synthesis:
 – Synopsys Design Compiler (Design Vision)
• Placement:
 – SoC Encounter
• Backend netlist Verification
 – Modelsim
• Fabrication
 – ASIC vendor

SoC Encounter Flow
SoC Encounter Flow

• Floorplan:
 - Placement area
 - IOs
 - RAM/ROM

• Power Planning
 - Design a power ring
 - Add horizontal and vertical power stripes

• Place Cells:
 - Place all the standard cells into the rows

Clock Tree Synthesis:
 - Places clock buffers
 - Timing constraints
 - Skew etc
SoC Encounter Flow

- Connect Power Supply:
 - Core Power
 - Pad Power

- Add FILLER cells
 - core filler cells
 - IO filler cells

SoC Encounter Flow

- Route Clock tree:
 - Finds an “optimal” way
 - Reduces skew

- Route signal nets
 - Final step

Demo Layout

Technology Description Files

LEF: Library Exchange Format

- Technology: Design rules, Capacitance, Resistance, Antenna factor, Vias
 - header.lef

- Cells & pads: Size, Class, Placement, Pin Information, Obstructions.
 - Standard_cell.lef
 - IO.lef
LEF-Example: Inverter

MACRO IV
CLASS CORE ; FOREIGN IV 0.000 0.000 ; ORIGIN 0.00 0.00 ; SIZE 3.00 BY 12.00 ; SITE CORE ; PIN A DIRECTION INPUT ; ANTENNASIZE 1.4 ; PORT LAYER metal1 ; RECT 0.50 5.00 1.00 5.50 ; END END A

Obstructions

Physical cell size

Terminals with physical placement

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verification

Design Description Files

Enc: Encounter Format
- Netlist, Layout

DEF: Design Exchange Format (not used in our flow.
- Netlist, Layout

Verilog
- Netlist, generated from synthesis tool

Starting the SoC Encounter

`inittde dicp10`
`encounter`

Remember to maintain the directory hierarchy.

Required Data for PnR (Faraday 130nm)

- LEF: Library Exchange Format
 - header.lef
 - standardCell.lef : Cell Library
 - IO.lef : Pad Library
 - memory.lef : custom
- lib/tlf: libraries that contain timing information
- sdc: Synopsys Design Constraint (generated during synthesis). Optional
- Memory: memory.lib
- Design (netlist): your_design.v
Design Import

Design Import

Floorplan

- A starting floorplan is created (required area is estimated by the tool)

- Global and detailed routing grids are created

- The core rows are created

- Sites for IOs are created
 - IO and block to core distance is defined by the user

Floorplan

- A starting floorplan is created (required area is estimated by the tool)

- Global and detailed routing grids are created

- The core rows are created

- Sites for IOs are created
 - IO and block to core distance is defined by the user

Floorplanning

Core Rows

If rows are flipped and abut VDD and GND can be shared by 2 rows.
Default setting!
Floorplan Setup

Specify Floorplan

![Floorplan Setup](image)

- Core utilization
- IO to core distance

Block Placement

![Block Placement](image)

Flight lines will indicate location of the pins

Block: Circuitry that is pre-routed, e.g., RAM.

IO Placement

- Specify location/orientation of pads
 - Input, output
 - core-power, pad-power
- Recommendation:
 - Put core power supply on *top or bottom*
 - Use gaps in the pad frame for additional power supply.
- !No CORE power supply at the corners!
- The more supplies the better

Power Rings

- Power paths are planned and modified before routing
- Creation of power rings that surround all blocks and core
- Creation of stripes over rows
- Connects rings, stripes and pads
Power Rings cont’d

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verification

Connecting Power (sRoute)

between
- IO power pins within IO rows
- CORE ring wires and the IO power pins
- stripes and core rings
- block power pins and the CORE ring wires

Route-> Special Route

Cell Placement

- Initial cell placement
- Moves, swaps changes orientation of cells to minimize required wire length
- Optimizes for wire length and net crossings
- A post CTS optimization may be carried out to optimize the design

Place -> Standard Cells

Deepak Dasalukunte, EIT, LTH, Digital IC project and Verification
Clock Tree Synthesis

- Clockpad and output need to be defined in a specification file.
 - clockpad/O

- Clock tree is synthesized and routed with highest priority to minimize clock skew.

Clock Skew

- **Absolute Skew**: Delay from input to leaf cell
- **Relative Skew**: Delay difference between leaf cells

Danger! Too much clock skew may:
1. Force you to reduce clock rate
2. Cause malfunction at any clock rate

Distributed Buffers in H-tree

Small relative skew

Absolute skew of less importance

CTS commands

- `create_clock` - period value -name clk_name
 - add [get_ports clk]

- Generate Clock tree specification
 `createClockTreeSpec -output file_name.ctstch`
 `-routeClknet -buffer buffer_list`

- Specify CTS file and synthesize clock tree.
 `specifyClockTree -clkfile file_name.ctstch`
 `clockDesign -specFile file_name.ctstch -clk clk_name`
 `deleteTrialRoute`
Synthesized Clock tree

Core filler cell

Core filler cells ensure the continuity of power/ground rails and N+/P+ wells in the row.

Filler cells will close any gap it is important to perform CTS before filler cell placement.

Clock buffers are placed in the core row gaps

Place \(\rightarrow\) Filler \(\rightarrow\) Add filler

Place \(\rightarrow\) Filler \(\rightarrow\) Add IO filler

Signal Routing

- Signal routing
 - Connects cells according to netlist
 - Metal wires are connected over several layers

- Routing time is strongly dependent on the design complexity

Route \(\rightarrow\) Nano Route

Verification and Tapeout

Verification (in SoCEnc)

- Connectivity, Antenna ...

Export

- Verilog (netlist)
- sdf (timing)

\(\rightarrow\) Post-layout simulation

\(\rightarrow\) GDS II \(\rightarrow\) Tapeout

Verify
Routing Script

- Each command is automatically written in a script file `encounter.cmd`
- Script needs to be trimmed (remove unnecessary commands)
- Easy to change parameters
- Can be reused with modifications
- Time to do PnR iteratively is reduced
- Serves as documentation and makes it possible to repeat the flow