Microwave theory 2017: Problems week 1 and 2

Problem 1

The TE;p mode in a rectangular waveguide with cross section 0 <z < a, 0 <y <b
(a > b), filled with air, has the complex electric field

T™r

E(r) = Eysin <—> =2y
a
where k, = \/k? — (7/a)? is the z—component of the wave vector and k = w/c is

the wavenumber.

a) What is the time-domain electric field E(r,t)? (Time dependence is e™“?)

b) Below a certain frequency (the cut-off frequency) the wave will attenuate with
increasing z. What is this frequency if a = 10 cm?

c¢) What is the phase speed in the z—direction of the TE;q mode when a = 10
cm and f =2 GHz?

d) Is the phase speed larger or smaller than the speed of light? Is there a contra-
diction with the theory of special relativity?

e) Assume that you like to feed the TEjy in the waveguide by a coaxial cable.
You drill a small hole in the waveguide and attach the coaxial cable. The inner
conductor of the coaxial cable extends straight into the waveguide. Suggest a
suitable position (z,y) for the hole.

Problem 2

The boundary condition for electromagnetic waves at a perfectly conducting surface
is that the tangential component of the electric field is zero. From this, and the
Maxwell equations, one can derive the following boundary conditions at the surfaces
of a rectangular waveguide:

1. The normal component of the magnetic field is zero on the surfaces (n-H = 0).

2. The normal derivative of the normal component of the electric field is zero on
the surfaces (n - V(n - E) =0)).

3. The normal derivative of the tangential components of the magnetic field are
zero on the surfaces (n - V(n x H) = 0).

This imply that all components of the electric and magnetic fields have the

r—dependence
. /mTx mmx
sin ( > or cos ( >
a a




and y—dependence
sin (@> or coS (@)
b b /-

The z—dependence is e'*+* for all componants.

a) The TE,,, modes have F, = 0 whereas H, has the space dependence

(mmc) (mry) hoz
cos cos [ —= ) e#%.
a b

Determine the space dependences of E,, E,, H,, and H,.

b) The TM,,,, modes have H, = 0 whereas F, #Z 0. Determine the space depen-
dences of F,, E,, E., H,, and H,,.

¢) Can there be TM,,o and TMy, modes in a rectangular waveguide?

Problem 3

A circular waveguide of length 0 < z < L and radius a has a non-reflecting termina-

tion at z = L. In the region — < z < — one has inserted a circular metal cylinder

with radius b < a and very thin wall.
Determine b/a such that it is only the TMys mode that can propagate from z = 0
to z = L without reflections from the inner cylinder.

Problem 5.6 in the book

A circular hollow waveguide has the radius a = 3 cm.

a) Determine the modes that can propagate at the frequency f = 5 GHz when
the waveguide is filled with air.

b) Assume that the waveguide is filled with a plastic material with relative per-
mittivity € = 3 and conductivity o = 107* S/m. Determine the attenuation
of the dominant mode in dB/km as a function of frequency.

Problem 5.7 in the book

Consider a rectangular waveguide with size 0 < * < a, 0 < y < b, a = 6 cm,
b =4 cm. In the region z > 0, a metallic plate is inserted, see figure 1. The plate i
parallel with the y-z-plane and is placed at © = xy. The walls of the waveguide and
the plate are perfect conductors. For a certain value of xy we measure P; and P,,
where P; and P, are the time averages of the power flow in positive and negative
z-direction, respectively, in the region z < 0. If only the fundamental mode TE;q
propagates in positive z-direction for z < 0 we have P./P; = 1 for all frequencies
below 3.75 GHz and P,./P; < 1 for frequencies above 3.75 GHz.



Figure 1: Geometry for problem 5.6.

a) Determine .

b) What is the quotient P,/P; when a TEy; mode propagates in the positive
z—direction for z < 0 at the frequency 20 GHz?

¢) What is P,/ P; when a TE3y mode propagates in positive z—direction for z < 0
at the frequency 10 GHz?

Problem 5.8 in the book

A waveguide has a cross section in the shape of a quarter circle with radius R.
Determine all TE- and TM-modes for the waveguide.



Solutions

Solution 1
a) E(r,t) = Re{E(r)e '} and then

E(r,t) = Eysin <E> cos(wt — k,2)y
a

b) Cut-off when k, = 0 gives k = 7/a and f. = ¢/(2a). Since a = 10 cm
fe =1.5GHz

c) Phase speed:ki, where w = 47 - 10° rad/s and k., = /k? — (7/a)?. Thus
v, = 4.54 - 10° m/s.
d) The phase speed is 50% larger than the speed of light. The special theory of

relativity is not violated since the phase speed is not the speed the information
and power move with.

e) The charges on the inner conductor couples to the electric field of the TM;,
mode. It should then be placed where the electric field is strong. That is
either on the lower surface at (z,y) = (a/2,0) or on the upper surface at

(z,y) = (a/2,).

Solution 2

a)

E, ~ cos (mﬂx> sin (—) elk=?
a b
m
E, ~ sin ( 7Tx) cos <_n7ry> k=2
a b
H, ~ sin (mms) cos (@) elh=?
a b
H, ~ cos <m7m> sin (mry) elh=?
a b
b)
m .
E, ~ cos ( Wx) sin (ﬂ) elk=?
a b
m .
E, ~ sin ( 7Tx) cos <@> eih=
a b
E, ~ sin (mwx) sin (ni> elk=2
a b
m
H, ~ sin ( wx) cos (@) elk=?
a b
m .
H, ~ cos ( Wm) sin (mry) elk=?
a b



Solution 3

The TMg; mode has E.(r) = voa(p)et=* where vgy(p) = Aga2Jo (5020)‘ However
a

Jo <€0—2p is also zero when 50_2P = &o1. This means that E, is zero at p = %a
a a 02

The boundary condition that the tangential component of E is zero at p = b is then

satisfied if b = @a = 2.405a/5.520 = 0.437a. The transverse part of the electric

02
field is directed in the radial direction and is not affected by the boundary at p = b.

Solution 5.6

a) We first determine the modes that can propagate when @ = 3 cm and f = 5
GHz. The lowest cut-off frequencies are obtained from the tables of zeros for
I () (for TM) and J] (z) (for TE) in appendix A

TE C() 1.841

TE — % ; ——""10%> = 2.93GHz < 5 GHz (0.1)
0 3.053

T8 _ %—3 102 = 4.86 GHz < 5 GHz (0.2)
2.405

TM _ ;)T . 102 = 3.83GHz < 5 GHz (0.3)

The next modes are fLF and fL™ which both are non-propagating modes
since they have cut-off frequency 6.1 GHz.

b) The waveguide is filled with a plastic material with ¢ = 107" S and € = 3.
The z-dependence of the fundamental mode T'Ey; is given by e'*+* where k, =

k% — k2. The wave number k is given by

w 2 w 2 g
Co Co WeEg

It is seen that o/(eep) =~ 107'1/(3 - 8.854107'%) In the microwave region
0/(weep) < 1 and the following approximations are valid

1/2
ko= (W — k22 = < ) y <1+‘ el )
— ( (@/eo)?e — k)
w oWty
R — — k2 1+
((CO) m) < 2((w/co)? E_kf?n))
k

and hence k, = Re(k,) + iIm(k,) where

o (w/eofe = ki) = S (o £7)

where f. = ¢p&11/(2ma\/€) och n = \/ o/ (e€g) =wave impedance. The numer-
ical value is f. = 1.7 GHz.

Im(kz) =



Solution 5.7

For the TE p-mode the electric field in the region z < 0 is
E(r) = gEjsin T gk
a

This is the fundamental mode with cut-off frequency f, = 0.5¢¢/b = 2.5 GHz. When
this mode hits the plate it couples to the TE,, g-modes in z > 0 and to the reflected
TE,,o-modes in z < 0.

Assume that o > a/2. The fundamental mode in z > 0, z < x¢ is TE;o. This
mode has the cut-off frequency f, = 0.5¢q/ 0.

e a) According to the text, power propagates in z > 0 for frequencies above 3.75
GHz. This means that 3.75 GHz is the cut-off frequency for the fundamental
mode TEjq in # < . Hence the plate is placed at zq = 0.5¢y/f. = 0.5 3 -
108/3.75-10° = 4 cm.

e b) The electric for the TEg3-mode in z < 0

E(r) = &Eysin Bibyeikzz

and then the boundary condition at x = xy is already satisfied since the
tangential component is zero. Thus P./P; = 0. The corresponding cut-off
frequency is at f. =3-0.5-¢o/b =15 GHz and hence the mode propagates at
20 GHz.

e ¢) The electric field for the TEszp-mode in z < 0 is
E(r) = §p sin 07" ¢h=s
a

The corresponding cut-off frequency is at f. = 3-0.5-¢o/a = 7.7 GHz and hence
the mode propagates at 10 GHz. At x = 2o = 4 cm we see that E(xg,2) =0
for the TE3p-mode. The electric field satisfies the correct boundary conditions
on the plate x = xy. this means that this mode is not affected by the plate and
it continues to propagate in z > 0, without a reflected wave.Hence P,./P; = 0.

Comment In z > 0 the mode TE3, splits up in a TEs)-mode in the region
r < xg and one TEjp-mode in 2y < z < a.

Solution 5.8

A quarter circle
TM-modes:
E.(r) = v(p)et*=* where v satisfies

Viv(p) + kjv(p) =0
v(R,¢) =v(p,0) =v(p,7/2) =0
v(p) begrinsad



Separation of variables v(p) = f(p)g(¢) gives

9" (®) +v9(¢) =0
9(0) = g(r/2) =0

= g(¢) =sin(2mo), v = 4m?

In the p-direction we get the Bessel differential equation of order 2m
1 2m'\
pdp 8p p
f(R) =0 [f(0)] < oo

this gives f(p) = Jom(Somnp/R) and kI = (omn/R)?, where Jop, (Somn) = 0.
The normalized eigenfunctions for the TM-modes are given by

o 2 J2m(£2m,np/R> .
U2m,n(p) = \/; RJém(£2m,n) sin 2mao

TE-modes:

H. (1) = w(p)eit=>

We get the same problem as in the TE-case except that the boundary conditions
are

dw(R, P)
dp

This gives the eigenfunctions

() \/ e 2m (omnp/ F) cos 2mao

\/ ann — 4m? RJ2m 772mn

and the eigenvalues k? = (99, /R)? where Jb, (nomn) =0, m=0,1,2.., n=1,2,...

dw(p,0) _ dw(p,m/2)

Y PR

=0,




