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Microwave theory 2017: Problems week 4

1. Determination of R, L, G, C

a

b

d

perfectly conducting ground plane

s
s

e

air

c

Use COMSOL to determine R, L, G, C at the frequency f = 30 GHz for the stripline
shown in the figure . The parameters are

σc = 4 · 107 S/m

ε = 4

σ = 0.01 S/m

a = 3µm

b = 0.5µm

d = 1µm

2. Determination of S-matrix

Consider a coaxial waveguide of length 0.6 m. The inner conductor has radius 3 cm
and the outer conductor has inner radius 0.1 m. Let the z−axis be the symmetry
axis such that the waveguide starts at z = 0 and ends at z = 0.6 m. Between the
conductors there is air, except for the region 0.2 m < z < 0.4 m where there is a
non-conducting dielectric material with ε = 4.
a) Use transmission line theory to determine the absolute value of the reflection
coefficient (|S11|) for the TEM-wave propagating in the positive z−direction. Plot
this in dB scale in the frequency range 100 Mhz-2 GHz with at least 1000 frequency
steps.
b) Since the medium between the conductors is lossless it must be that the incident
energy is equal to the reflected energy plus the transmitted energy. It means that
|S11|2 + |S21|2 = 1, where S11 = Γ is the reflection coefficient and S21 = T the
transmission coefficient. Use this to calculate the transmission coefficient. You then
have the absolute values of the S-parameters S11 and S21. Due to the symmetry it
must be that S22 = S11 and S12 = S21. Plot also |S21| in the same frequency range
as |S11|.
c) Now use COMSOL to calculate the scattering matrix. Compare with the analytic
results. Use 2D axisymmetric, EM-waves and frequency domain. Plot S11 and S21

in dB scale in the frequency range 300 Mhz-400 MHz using 100 frequency steps.
Compare with the Matlab graph.
d) At what frequencies is the reflection coefficient zero. Notice that a very good
resolution is required in order to find these zeros from a graph.
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3. Solve problem 5.4 analytically and with Comsol

a) Start by solving 5.4 analytically. Determine the lowest cut-off frequency for a
waveguide with 10 cm radius and compare that with the lowest cut-off frequency

fc =
1.841

2πa
c0 for the circular waveguide.

Hint: To obtain an approximate value of the zero of the derivative you can plot the
Bessel function in Matlab.
b) Find the cut-off frequencies with Comsol and check that you get the same value
as in a).
c) For the fundamental mode the electric field has a singularity at the edge of the
strip. Check this with Comsol by magnifying the region around the edge.

4. Solve problem 5.6 analytically and with Comsol
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Solutions

1

The extremely finite mesh gives approximately

ne = 1.9146− j0.36183

This gives, with γ = jneω/c0,

γ = 2.2732 · 102 + j1.2029 · 103

and
Z = 39.9303− j7.4917

Then
R = Re{γZ} = 1.8 · 104 Ω/m

(compare with the DC resistance R = 1/(σcab) = 1.66 · 104 Ω/m)

L = Im{γZ}/ω = 2.4578 · 10−7 H/m

G = Re{γ/Z} = 0.0396 S/m

and
C = Im{γ/Z}/ω = 1.60 · 10−10 F/m

2

Use the formula for input impedance. At z = 0.2 m you use

Zin

Z0

=
Z1

Z0

cos β`+ Z1/Z0j sin β`

Z1/Z0 cos β`+ j sin β`

where β = ω
√
ε/c, ` = 0.2 m, Z1/Z0 = 1/

√
ε. The reflection coefficient is given by

|Γ| =

∣∣∣∣∣∣∣∣
Zin

Z0

− 1

Zin

Z0

+ 1

∣∣∣∣∣∣∣∣
The reflection coefficient is zero when sin β` = nπ, n = 1, 2, 3 . . .. That gives
frequencies fn = n · 0.375 GHz.
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3 problem 5.4

We only consider TE-modes. For a TE-mode Hz(r) = w(ρ, φ)eikzz where

∇2
Tw + k2tw = 0

∂w

∂ρ
(a, φ) =

∂w

∂φ
(ρ, 0) =

∂w

∂φ
(a, 2π) = 0

w(ρ, φ) finite

Separation of variables w = f(ρ)g(φ) inserted in the Helmholtz equation ∇2
Tw +

k2tw = 0 gives the eigenvalue problem

g′′(φ) + γg(φ) = 0 (0.1)

g′(0) = g′(2π) = 0 (0.2)

Equation (0.1) gives g(φ) = A sin
√
γφ+B cos

√
γφ where equation (0.2) gives A = 0

and γ = (m/2)2, m = 0, 1, . . .. In the ρ-direction we get the Bessel differential
equation

1

ρ

∂

∂ρ
ρ
∂f(ρ)

∂ρ
+

(
k2t −

(
m

2ρ

)2
)
f(ρ) = 0

f ′(a) = 0

with the finite solutions

fmn(ρ) = Jm/2(ktρ) = Jm/2(ηm/2,nρ/a)

where J ′m/2(ηm/2,n) = 0. The normalized modes are given by

wmn = BJm/2(ktmnρ) cosmφ/2

where ktmn = ηm/2,n/a and

B =

√
εm
2π

 a∫
0

(
Jm/2(ktmnρ)

)2
ρdρ

−1/2

with εm = 2− δm,0.

Cut-off frequencies

For even m we get the zeros of J ′m/2 from appendix A. For odd m we can utilize

that J ′ν(x) = ν
x
Jν(x)− Jν+1(x) and determine the zeros numerically in e.g., Matlab.

This gives the following values of ηm/2,n
n=1 n=2 n=3 n=4

m=0 3.832 7.016 10.17 13.32
m=1 1.1656 4.60 7.79 19.95
m=2 1.841 5.331 8.536 11.71
m=3 2.46 6.03 9.26 12.44



5

We see that TE1/2,1 has the lowest cut-off frequency f1/2,1 = c01.1656/(2πa). With-
out the metal plate, according to table 3.4 in the book, the TE11 mode has the lowest
cut-off frequency f1,1 = c01.841/(2πa). The cut-off frequency for the fundamental
mode is then reduced by almost 40% when the metal plate is introduced.

4 Problem 5.6

a) We first determine the modes that can propagate when a = 3 cm and f = 5 GHz.
The lowest cut-off frequencies are obtained from the tables of zeros for Jm(x) (for
TM) and J ′m(x) (for TE) in appendix A

fTE11 =
c0
2π

1.841

3
102 = 2.93 GHz < 5 GHz (0.3)

fTE21 =
c0
2π

3.053

3
102 = 4.86 GHz < 5 GHz (0.4)

fTM01 =
c0
2π

2.405

3
102 = 3.83 GHz < 5 GHz (0.5)

The next modes are fTE01 and fTM11 which both are non-propagating modes since they
have cut-off frequency 6.1 GHz.
b) The waveguide is filled with a plastic material with σ = 10−11 S/m and ε = 3. The
z-dependence of the fundamental mode TE11 is given by eikzz where kz =

√
k2 − k2t11.

The wave number k is given by

k2 =

(
ω

c0

)2

εny =

(
ω

c0

)2(
ε+ i

σ

ωε0

)
It is seen that σ/(εε0) ≈ 10−11/(3·8.854 10−12) In the microwave region σ/(ωεε0)� 1
and the following approximations are valid

kz = (k2 − k2t11)1/2 =

((
ω

c0

)2

ε− k2t11

)1/2(
1 + i

σωµ0

((ω/c0)2ε− k2t11)

)1/2

≈

((
ω

c0

)2

ε− k2t11

)1/2(
1 + i

σωµ0

2((ω/c0)2ε− k2t11)

)
and hence kz = Re(kz) + i Im(kz) where

Im(kz) =
σωµ0

2

(
(ω/c0)

2ε− k2t11
)−1/2

=
ση

2

(
1− (fc/f)2

)−1/2
where fc = c0ξ11/(2πa

√
ε) och η =

√
µ0/(εε0) =wave impedance. The numerical

value is fc = 1.7 GHz.


