Microwave theory 2016: Problems for week 5

1

a) Show analytically that the time averages of the stored electric and magnetic
energies in a resonance cavity are equal.
b) Check with COMSOL for a cavity that you choose.

2

Estimate the number of resonances with a wavelength larger than 500 nm in a cubic
vacuum cavity with volume one cubic meter.

3

a) Determine the fundamental mode in a circular waveguide with radius a with
vacuum inside the waveguide.

b) Plot the transverse electric and magnetic field of the fundamental mode in the
cross section of the waveguide.

¢) Determine the surface current density for the fundamental mode.

4

a) Determine the fundamental mode for a rectangular waveguide.

b) Give the xz, y-dependence of the different components of the transverse electric
and magnetic fields for the fundamental mode without doing any calculations.

¢) Determine the z—component of the Poynting vector S(x,y).

d) Determine the attenuation of the fundamental mode in dB/m when a = 3 cm,
b =1 cm in the frequency interval [0, f.10] where f.1o is the cut-off frequency for the
fundamental mode.

5

Around 1970 there were attempts to use circular waveguides for communication.
Such a system was developed by Bell Telephone Laboratories in USA that managed
to send 234 000 two-way telephone channels in one waveguide. One then used the
waveguide mode TEy; in a waveguide with radius 25 mm in the frequency band
40-110 GHz. Determine the attenuation in dB/m for the fundamental mode TE;;
and for the mode TEq; in a circular waveguide with radius 25 mm as a function of
frequency in the interval [f,, 40 GHz|, where f. is the cut-off frequency for the TE;
mode. Explain why they used the mode TEj, and not the fundamental mode. The
waveguide is made out of copper.



6

Determine the three lowest resonance frequencies for a coaxial cable that is termi-
nated by perfectly conducting plates at z = 0 and z = h = 10 cm. The radius of the
inner and outer conductor is ¢ = 3 mm and b =10 mm, respectively. The material
between the conductors is a plastic material with ¢ = 0 and ¢ = 4.

7

a) Determine the three lowest resonance frequencies for a rectangular parallelpiped
with sides a = 4 cm, b = 3 cm and height A = 5 cm. All of the walls are perfectly
conducting and there is vacuum in the cavity.

b) Use COMSOL 3D to check your result.

¢) Use COMSOL with 3D and extrude to check your result.

8

a) Design a resonator in the shape of a circular cylinder such that it has the two
lowest resonance frequencies at f; = 10 GHz and f; = 15 GHz.
b) Use COMSOL 2D axisymmetric mode to check your result.

9

Let COMSOL determine the ten lowest resonance frequencies for a spherical cavity
with radius ¢ = 1 m, filled with vacuum and with perfectly conducting wall and
compare with the exact values in table 6.1 in the book.

a) First use Axially symmetry with three different mesh sizes.

b) Use 3D with three different meshes.

10

Use COMSOL to determine the Q-values for the four lowest resonances in a spherical
cavity with radius a = 1 m, filled with vacuum and with copper walls. Compare the
Q-values with the analytic expressions in Eqgs. 6.41 and 6.44,

TE(r=1)

(1—%) TM (7 = 2)

Q=

STIRSESTI S

where 6 = is the skin depth of metal and [ is the index for the polar

wao o
variation, see section 6.3.2.

a) First use Axially symmetry with three different mesh sizes.
b) Use 3D with three different meshes.



11

Check the result from Slater’s theorem in Eq. 6.17 (or 6.16) by entering a sphere
into a cylindrical cavity. Let the cylindrical cavity have radius 10 cm and height
10 cm. Let the sphere have radius a = 0.5 cm and be located in the middle of the
cylinder. Use 2D axial symmetry in Comsol.

a) Consider the TMg;p mode. Enter the sphere but let it be air. Check that the

2.405
frequency of the TMg;p mode is given by f = Lo 220 Then normalize the electric

T a
field such it satisfies Eq. 6.1. Now let Comsol calculate the RHS of Eq. 6.17.
b) Let the sphere be PEC. Calculate the new resonance frequency and check if 6.17
is satisfied.



Solutions

S1

Let E, be the electric field of a resonance mode in a cavity. Since FE, satisfies
Maxwell’s equations it follows that

Vx(VxE,)—-kE,=0

Take the scalar product with E and use

1
E - Vx(VXE,) = (VXE})-(VXE,)-V-(E'x(VxE,) = —k’:B,-H~V-(E;x(VxE,))

€o€

Thus

1
— kB, -H: -V (E* x (VxE,))=k|E,]
€€

The volume integral of this relation and the use of Gauss theorem give

kg// Bn-H,’;deLeoe%'f%(E;x(VxEn))dS:kieoe// |E,|?dV
\% S

Due to the boundary condition n x E,, =0 we get n- (E x (VX E,)) =V x E,, -
(n x E}) =0. Since D = ¢ye we get

1// Bn-H;dvzl// E, - D:dV
4JJ v 4 JJ v

The volume integral to the left is he time average of the magnetic energy in the
cavity and the volume integral to the right is the time average of the electric energy.

S2

97 \ 2
The resonance wavenumbers (TE or TM) are given by k2 = ( y T ) = (n* +
nml
2
m?+1?) (E) where @ = 1 m. Now A,y > A = 500 nm. This means that the n,m,(
a

have to satisfy
24\ 2
n?+m?+ 1% < (Ta) =16-10"
Only positive n,m,[ are allowed. The total number of combinations n,m,[ that
satisfies this relation equals the volume of an eight of a sphere with radius 4 - 10°

1
units. This means that there are —- §7r(4- 105)3 resonances. Since there are both TE
and TM modes this should be multiplied by two. The total number is then 6.7 -10%.



S3
a) For the TE modes E.(r) = 0 and H.(r) = w(p, ¢)e**=* where

Wi (P, @) = Ay I (Memnp/ @) cos me

where A,,, denotes the normalization constant and where 7,,, is the n :th zero of
the derivative J; (kia). The cut-off frequency for the mn-mode is given by

CoT)
f cmn — —

2ma
The lowest zero is n;; = 1.841 which gives the cut-off frequency

3-10%-1.841 8.79 - 107
fe1 = = Hz

2ma a

where a is in meter.

For the TM-modes H,(r) = 0 and E,(r) = v(p)e**=* where
Vimn(0y @) = BinIm (Emnp/a) cos me

where B,,,, denotes the normalization constant and &,,, is the nth zero of J,,(ka).
The lowest cut-off frequency is the TMy; mode which has the cut-off frequency
3-10%-2.405 1.14-108

c = = H
/ 2ma a z

where a is in meter. The fundamental mode is the mode with the lowest cut-off
frequency and in this case it is the TE;; mode.
b) The transverse fields for the TE-modes are given by Eqgs. (6.23) and (6.24)

i w 1Amnw
Er = 2 —z X V1, = o S S (M) @) COS T + pTJ ' (Mmnp/a) sSinma)
tmn C 0

1 1Amnw

Hr=Z,2x Er =27, — (Pt T3, (Mnp @) cos m — &%Jm(nmnp/a) sin mg)

mn

where Z,,, = ZJ Ho is the TE-mode impedance. For the fundamental mode we get
1w, 1A11w

ET =—75 % X VT’LUH = (¢)n11J1(1711,0/a) COS¢ + P Jl(nllp/a') sin ¢)
ki co 71

. 1A w
Hp = Zﬁlz X Er = Zul 2 HC (PTIMJ (Mm1p/a)cos ¢ — ¢ Ji(nuip/a)sin @)
1160

When these vectors are plotted in Matlab we get the patterns in figure 1.
¢) The surface current density is given by the condition

Jo=nxH(r)=—px H(a,¢,2) = pH.(a,¢,2) — 2Hy(a, ¢, z)
This gives

1A11w

Js(p, ¢, 2) = <qAbA11J1(n11)cos¢ — 277 J1(m11) sin gb) k2

M11Co

Notice that the ¢ and z—components are 90° out of phase.



Electric field TEq; Magnetic field TE{;

Figure 1: The electric field and the transverse magnetic field for the TE;; mode

S4

a) The fundamental mode is the mode with the lowest cut-off frequency. From the
book we know that this is the TE p-mode. For this mode

2 .
H.(r) =/ <08 %elk”

where k, = \/(w/c)? — (7/a)2.

T
b) We do not have any y—dependence and the x—dependence is either sin — or
a

T
cos —. The boundary conditions are that the tangential components of the electric

a

field are zero at all walls, that the normal components of H is zero on all walls, and
that the normal derivative of the tangential component of the tangential component
of H is zero on all walls. Then:

e F, = 0 since it is a TE-mode. It also follows from that E, must be zero at all
walls and hence also for all y—values.

E, = 0 since it must be zero at y = 0 and y = b and hence for all y
e E, ~sin "% since £, must be zero at v =0 and z = a

e H, ~ sin”* since H, is zero at =0 and x = a

e H, = 0 since it must be zero at y = 0 and y = b and hence for all y

¢) We now have to calculate the explicit expressions for the transverse electric and
magnetic fields. We use Egs. (6.23) and (6.24) for this

w 2 T lw w2 Tx lwa |2 . Tx
ET(x,y):—k2 z><VT(\/—bcos—):yk2 A S =Yy sin—

14 . ,lwa |2 T
Hy(z,y)=Z'2%x Ep = —wZHl?T—COU S



WHo

k.11
the complex Poynting vector is

T
since ky19 = —. Here Z11 = is the TE-mode impedance. The z-component of
a

1 1 ?
S.=%5Erx Hy=(21)" — (“"—a sin @)

The time average of the Power flow density is Re{S,}. This is zero for frequencies
below the cut-off frequency since then k.;; is imaginary but the rest of the factors
are real.

i i (T2
d) For frequencies below the cut-off frequencies then k,;g = i <—> — k2 and
a
. T\ 2
eF=10 = 79 where a = (—) — k2. When a = 3 cm the cut-off frequency is
a

5 GHz. The attenuation is given in figure 3.
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Figure 2: The attenuation of the fundamental mode in a rectangular waveguide.
The cut-off frequency is 5 GHz.

S5

The power is attenuated as P(z) = P(0)e~*?* in the waveguide. The attenuation
constant is for TE-modes given by the formula on page 124 in the book. Let a
denote the radius.

P ook mn k

tmn
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Figure 3: The electric field and the transverse component of the magnetic field for
the fundamental mode in a rectangular waveguide.

Here o = 5.8-107 is the conductivity of copper and § = 1/2/(wpo is the skin depth.
For the TEy; mode we have

wmn(p> ¢) = Aanm(k;tmnp) COoS me
where the normalization constant is give by the table on page 112

Em /r/mn
Amn =
W(U%m —m?) Jon(Mn)

where €, is 1 for m = 0 and 2 otherwise and 7,,, = kymna is the n :th zero of J! .
The gradient of w,,, is given by

A~ / ~m .
vamn(p, ¢) = Amn <pktmnt]m(ktmnp) COS me - Cb; Jm(kfcp) Sin ngb)

Since J), (kymna) = 0 it is seen that

2

A%v,n k‘itzmn m2 kgmn .92 2 9
Qp = w00 1ok / ( a2 sin” me + cos mgb) (Jn(kea))™ ade
0

tmn

A% K2 2ma (mPk? 5
EmwWad 1ok 2rmn ( k. na? * ) (S (11mn))
o 2 kagmn + kfmnCLQ
" wobok.mna k2..a% —m?

When the values for the TEq; and TE;; modes are inserted in this expression figure
5 is obtained. We see that the attenuation of TE(, decreases with frequency and
gives a very small attenuation at high frequencies.
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Figure 4: The attenuation of the TEy; and TE;; modes as a function of frequency

Electric field TE-mode, (m,n)=(0,1) Magnetic field TE-mode, (m,n)=(0,1)

Figure 5: The electric field and the transverse magnetic field for the TEq;
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S6

In the coaxial cable the TEM-mode propagates at all frequencies. The z—dependence
is given by ' .
E(p,2) = E(p)(a*e™ +a"e™™)

The boundary conditions says that the electric field is zero at z = 0 and z = h.
Thus

(at4+a7)=0
(ate™ 4 ame Y =

From this we get at = —a~ and a* sin kh = 0 and then kh = ¢x, { =1,2,3.... The

14 l
resonance frequencies are given by f, = QC_h = ;LL\/_. That gives the three lowest
€
resonant frequencies
Co
= =0.75GH
h 2h\/e z
200
=——=15GH
f2 2h\/e ‘
o= S 995GH

RPING
There are also TE and TM waveguide modes in the coaxial cables that will have
resonances. However, their resonances are much higher than 2.25 GHz.

ST

We view the parallelpiped as a waveguide in the z—direction with cross section
0 <x<a,0<y<b The general theory for finite waveguide cavities gives the
resonance frequencies

o=l (5) =5 (5 (5)

The mnt values are

m=1,23...,n=1,23...,0=0,1,2,3..., TM-modes
m=0,1,2,3...,n=0,1,2,3..., (m,n) # (0,0), £=1,2,3..., TE-modes

Only one of mnf can be zero. Hence the three lowest resonance frequencies are

o = () + (1) = ssoc

JrEon1 = % (%)2 + (%)2 = 5.83 GHz

[\

= )+ () =
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S8

We let the waveguide be directed in the z—direction with perfectly conducting plates
at z =0 and z = h. The radius of the waveguide is a. The general theory for finite
waveguide cavities gives the resonance frequencies

f —i k2 + ﬁ_ﬂ' ’
mné_2ﬂ_ tmn h

The transverse wavenumbers and the ¢-values are given by

ktmn = &mn/a, €=0,1,2,3... TM-modes
Etmn = Nmn/a, € =1,2,3... TM-modes

where &, is the n:th zero of the Bessel function J,,(k;a) and 7,,, is the n:th zero
of the derivative J (kia) The lowest resonance frequencies depend on the height h
and the radius a. The candidates are

108
1. TMyyg with f, — o1 _ 3-107-2.405

2ma 2ma
. c 3-10%-3.832
2. TMllO with .fc = 251_1; = o

. _c 1) 2 m™?2 ¢ 1.841\2 T 2
3. T with fo = 27T\/< a ) * (h) B 27?\/( a - (h)
2 2 2
. _c N 2 2_7r _ 1.841 2_7T
4. TE112W1thfc—2ﬂ_\/<a) +<h) —271_\/< a + h

We have two parameters to determine, namely a and h. There are several options.

One is to have f.ry010 = 10 GHz and f.rg111 = 15 GHz. This gives a = 1.15 cm
and h = 1.16 cm. The next resonance frequency is forar110 = 15.93 GHz.

S9
See Table 6.2.
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S10

The expressions in the book and the evaluations in COMSOL using Extremely fine
mesh give

frequency/MHz | Q-value/10° book | Q-value/10° COMSOL
130.911744010408 1.2928833946 1.3182895043
184.662441148350 1.2534662007 1.2576461408
214.396074654639 2.2531573086 2.2550594492
237.299051157491 1.2204405958 1.22064638087
274.994531395624 2.5517911552 2.55179068083




