Microwave theory, March 26, 2014 Anders Karlsson, anders.karlsson@eit.lth.se Electrical and information technology ### Outline - Waveguides - ► Eigenvalue problems for TE and TM - ► TEM modes - Rectangular waveguide ### Hollow waveguide Two different type of waves can propagate in this waveguide! TM-waves \Rightarrow transverse magnetic field \Rightarrow $H_z=0$ TE-waves \Rightarrow transverse electric field \Rightarrow $E_z=0$ #### TM-waves TM $$\Rightarrow H_z = 0$$ (transverse magnetic field), $E_z(\mathbf{r}) = v(\boldsymbol{\rho})e^{\mathrm{i}k_zz}$, $\boldsymbol{\rho} = (x,y)$ $$\begin{split} &\nabla_T^2 v(\boldsymbol{\rho}) + k_t^2 v(\boldsymbol{\rho}) = 0, \ \boldsymbol{\rho} \in \Omega \\ &v(\boldsymbol{\rho}) = 0, \ \boldsymbol{\rho} \text{ on } \Gamma \end{split}$$ Eigenvalue problem! Eigenvalues: k_{tn}^2 Eigenfunctions: v_n , $n = 1, 2 \dots \infty$ #### TE-waves $$\mathsf{TE} \Rightarrow E_z = 0$$ (transverse electric field), $H_z(\mathbf{r}) = w(\boldsymbol{\rho})e^{\mathrm{i}k_z z}$ $$\nabla_T^2 w(\boldsymbol{\rho}) + k_t^2 w(\boldsymbol{\rho}) = 0, \ \boldsymbol{\rho} \in \Omega$$ $$\hat{\boldsymbol{n}} \cdot \nabla w(\boldsymbol{\rho}) = 0, \ \boldsymbol{\rho} \text{ on } \Gamma$$ Eigenvalue problem for $w(\rho)!$ Eigenvalues: k_{tn}^2 Eigenfunctions: w_n , $n = 1, 2 \dots \infty$ # Hollow waveguide with two conductors Three different type of waves can propagate in this waveguide! TM-waves \Rightarrow transverse magnetic field $\Rightarrow H_z=0,\ E_z=v(\rho)e^{\mathrm{i}k_zz}$ TE-waves \Rightarrow transverse electric field $\Rightarrow E_z=0,\ H_z=w(\rho)e^{\mathrm{i}k_zz}$ TEM-wave \Rightarrow transverse electric and magnetic field $H_z=0$ and $E_z=0.\ \boldsymbol{E}=-\nabla\phi(\rho)e^{\mathrm{i}kz}$ #### Scheme TM - 1. Solve eigenvalue problem for $v_n(\rho)$ and k_{tn}^2 . - 2. Propagation constant $k_{zn} = \sqrt{k^2 k_{tn}^2}$ - 3. $E_{zn}(\mathbf{r}) = v_n(\boldsymbol{\rho})e^{\mathrm{i}k_{zn}z}$ - 4. E_x , E_y , H_x , H_y are obtained from Chapter 4 #### Scheme TE - 1. Solve eigenvalue problem for $w_n(\rho)$ and k_{tn}^2 . - 2. Propagation constant $k_{zn} = \sqrt{k^2 k_{tn}^2}$ - 3. $H_{zn}(\mathbf{r}) = w_n(\boldsymbol{\rho})e^{\mathrm{i}k_{zn}z}$ - 4. E_x , E_y , H_x , H_y are obtained from Chapter 4 ### z-dependence All components must have the same z-dependence $e^{\mathrm{i}k_zz}$ (positive z-direction), or $e^{-\mathrm{i}k_zz}$ (negative z-direction). We solve for E_z or H_z $$E_z(\boldsymbol{r}) = v(\boldsymbol{\rho})e^{\mathrm{i}k_z z}$$ # Cut-off frequency $$f_{cn}= rac{c}{2\pi}k_{tn}=$$ cut-off frequency #### Three cases - 1. $f < f_{cn} \Rightarrow k_{zn}$ imaginary \Rightarrow non-propagating mode - 2. $f = f_{cn} \Rightarrow k_{zn} = 0 \Rightarrow \text{Cut-off}$ - 3. $f > f_{cn} \Rightarrow k_{zn} > 0$ and real \Rightarrow propagating mode