

Microwave theory, March 26, 2014

Anders Karlsson, anders.karlsson@eit.lth.se

Electrical and information technology

Outline

- Waveguides
- ► Eigenvalue problems for TE and TM
- ► TEM modes
- Rectangular waveguide

Hollow waveguide

Two different type of waves can propagate in this waveguide! TM-waves \Rightarrow transverse magnetic field \Rightarrow $H_z=0$ TE-waves \Rightarrow transverse electric field \Rightarrow $E_z=0$

TM-waves

TM
$$\Rightarrow H_z = 0$$
 (transverse magnetic field), $E_z(\mathbf{r}) = v(\boldsymbol{\rho})e^{\mathrm{i}k_zz}$, $\boldsymbol{\rho} = (x,y)$

$$\begin{split} &\nabla_T^2 v(\boldsymbol{\rho}) + k_t^2 v(\boldsymbol{\rho}) = 0, \ \boldsymbol{\rho} \in \Omega \\ &v(\boldsymbol{\rho}) = 0, \ \boldsymbol{\rho} \text{ on } \Gamma \end{split}$$

Eigenvalue problem!

Eigenvalues: k_{tn}^2

Eigenfunctions: v_n , $n = 1, 2 \dots \infty$

TE-waves

$$\mathsf{TE} \Rightarrow E_z = 0$$
 (transverse electric field), $H_z(\mathbf{r}) = w(\boldsymbol{\rho})e^{\mathrm{i}k_z z}$

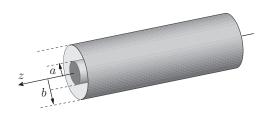
$$\nabla_T^2 w(\boldsymbol{\rho}) + k_t^2 w(\boldsymbol{\rho}) = 0, \ \boldsymbol{\rho} \in \Omega$$
$$\hat{\boldsymbol{n}} \cdot \nabla w(\boldsymbol{\rho}) = 0, \ \boldsymbol{\rho} \text{ on } \Gamma$$

Eigenvalue problem for $w(\rho)!$

Eigenvalues: k_{tn}^2

Eigenfunctions: w_n , $n = 1, 2 \dots \infty$

Hollow waveguide with two conductors



Three different type of waves can propagate in this waveguide! TM-waves \Rightarrow transverse magnetic field $\Rightarrow H_z=0,\ E_z=v(\rho)e^{\mathrm{i}k_zz}$ TE-waves \Rightarrow transverse electric field $\Rightarrow E_z=0,\ H_z=w(\rho)e^{\mathrm{i}k_zz}$ TEM-wave \Rightarrow transverse electric and magnetic field $H_z=0$ and $E_z=0.\ \boldsymbol{E}=-\nabla\phi(\rho)e^{\mathrm{i}kz}$

Scheme TM

- 1. Solve eigenvalue problem for $v_n(\rho)$ and k_{tn}^2 .
- 2. Propagation constant $k_{zn} = \sqrt{k^2 k_{tn}^2}$
- 3. $E_{zn}(\mathbf{r}) = v_n(\boldsymbol{\rho})e^{\mathrm{i}k_{zn}z}$
- 4. E_x , E_y , H_x , H_y are obtained from Chapter 4

Scheme TE

- 1. Solve eigenvalue problem for $w_n(\rho)$ and k_{tn}^2 .
- 2. Propagation constant $k_{zn} = \sqrt{k^2 k_{tn}^2}$
- 3. $H_{zn}(\mathbf{r}) = w_n(\boldsymbol{\rho})e^{\mathrm{i}k_{zn}z}$
- 4. E_x , E_y , H_x , H_y are obtained from Chapter 4

z-dependence

All components must have the same z-dependence $e^{\mathrm{i}k_zz}$ (positive z-direction), or $e^{-\mathrm{i}k_zz}$ (negative z-direction). We solve for E_z or H_z

$$E_z(\boldsymbol{r}) = v(\boldsymbol{\rho})e^{\mathrm{i}k_z z}$$

Cut-off frequency

$$f_{cn}=rac{c}{2\pi}k_{tn}=$$
cut-off frequency

Three cases

- 1. $f < f_{cn} \Rightarrow k_{zn}$ imaginary \Rightarrow non-propagating mode
- 2. $f = f_{cn} \Rightarrow k_{zn} = 0 \Rightarrow \text{Cut-off}$
- 3. $f > f_{cn} \Rightarrow k_{zn} > 0$ and real \Rightarrow propagating mode