

Microwave theory, March 21, 2016

Anders Karlsson, anders.karlsson@eit.lth.se

Electrical and information technology

Microwave theory, March 12, 2012

All information is on the course home page http://www.eit.lth.se/

Examination

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

- ▶ Hand in problems. Three assignments.
- Project.
- Oral exam for grades 4 and 5.

The assignments should be solved individually. You are allowed to

∃ nar

・ 同 ト ・ ヨ ト ・ ヨ ト

- discuss the problem with others
- ask the teacher (Anders) if you get stuck

You are not allowed to copy solutions!

- Groups of two students (or, if needed three or one).
- All students have to contribute to the project.
- All students have to take part in the oral presentation of the project.

- ▶ Discussions with the teacher (Anders) are recommended.
- ▶ You are not allowed to copy results from other groups.

- Finite element method program
- Installed on most of the computers in the basement of the E-building

▲□ → ▲ □ → ▲ □ → □ → ○ ○ ○

- ► Install it from LDC. See information on homepage
- ▶ Introduction to COMSOL Tuesday 25/3 in E:Uranus

Microwave theory

- Maxwell equations
- Transmission lines
- Waveguides
- Resonance cavities
- Dielectric waveguides
 - Optical fibers
 - Dielectric resonators

Example

イロト イヨト イヨト イヨト ヨー シベル

Example

Time domain!

$$\begin{aligned} \nabla \times \boldsymbol{E}(\boldsymbol{r},t) &= -\frac{\partial \boldsymbol{B}(\boldsymbol{r},t)}{\partial t} \\ \nabla \times \boldsymbol{H}(\boldsymbol{r},t) &= \boldsymbol{J}(\boldsymbol{r},t) + \frac{\partial \boldsymbol{D}(\boldsymbol{r},t)}{\partial t} \end{aligned}$$

E=electric field D=electric flux density H=magnetic field B=magnetic flux density J=current density What else is needed in order to find \boldsymbol{E} and \boldsymbol{H} in a typical problem?

- Sources
- Constitutive relations: $D = \epsilon_0 \epsilon E$, $B = \mu_0 \mu H$, $J = \sigma E$

Boundary conditions

Frequency domain!

$$abla imes oldsymbol{E}(oldsymbol{r}) = -\mathrm{j}\omegaoldsymbol{B}(oldsymbol{r})$$

 $abla imes oldsymbol{H}(oldsymbol{r}) = oldsymbol{J}(oldsymbol{r}) + \mathrm{j}\omegaoldsymbol{D}(oldsymbol{r})$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Transformation between time and frequency domain:

$$\begin{aligned} \boldsymbol{E}(\boldsymbol{r},t) &= \boldsymbol{E}_0(\boldsymbol{r})\cos(\omega t + \phi) \longleftrightarrow \boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{E}_0(\boldsymbol{r})e^{j\phi} \\ v(t) &= V_0\cos(\omega t + \pi/4) \qquad \longleftrightarrow V = V_0e^{j\pi/4} \\ \frac{\partial}{\partial t} \qquad \longleftrightarrow j\omega \end{aligned}$$

E(r) =complex electric field V =complex voltage

Maxwell equations in the frequency domain lead to

$$\nabla^2 \boldsymbol{E}(\boldsymbol{r}) + k^2 \boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{0}$$
$$\nabla^2 \boldsymbol{H}(\boldsymbol{r}) + k^2 \boldsymbol{H}(\boldsymbol{r}) = \boldsymbol{0}$$

 $k = \omega \sqrt{\mu_0 \mu \epsilon_0 \epsilon} = \frac{\omega}{c}$ =wave number in the material. Helmholtz equations for E and H are vital for waveguides and cavities!

Boundary between two materials Tangential component of E is the same on both sides! Tangential component of H is the same on both sides!

Boundary to a perfect conductor Tangential component of E is zero!

イロト イボト イヨト イヨト

I ∽a~

Circuits

Discrete circuits!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

 $d \ll \lambda \Rightarrow$ discrete circuit \Rightarrow **Circuit theory**.

Circuits

Discrete circuits!

化口水 化塑料 化医水化医水合 医

 $d \ll \lambda \Rightarrow$ discrete circuit \Rightarrow **Circuit theory**.

► Analogue telephone line? $d \approx 1 \text{ km}$, $f_{\text{max}} \sim 6 \text{ kHz}$, $\lambda = 50 \text{ km}$ $\Rightarrow d \ll \lambda \text{ Yes!}$

► Telephone line with ADSL? $d \approx 1$ km, $f_{\text{max}} \sim 1$ MHz, $\lambda = 300 \text{ m} \Rightarrow d > \lambda \text{ No!}$

Circuits

 $d > 0.1\lambda \Rightarrow$ Transmission line.

Transmission lines

- Coaxial cables
- Parallel wires (e.g. twisted pairs for LAN)
- Micro strips in integrated circuits and on PCB.
- ▶ ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Transmission lines

- ▶ Voltage v(z,t) and current i(z,t). Waves!
- Distributed line parameters (R, L, G, C)

Transmission line parameters

R =resistance per unit length L =inductance per unit length G =conductance per unit length C =capacitance per unit length

Waves along transmission line

The voltage and current are superpositions of waves traveling to the left and to the right! They travel with the speed of light.