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Microwave theory 2014: Problems week 3

Problems

Problems 5.1, 5.2, 5.4–5.8 and 6.3 in the book.

Problem V3.1

A circular waveguide of length 0 < z < L and radius a has a non-reflecting termina-

tion at z = L. In the region
L

4
< z <

L

2
one has inserted a circular metal cylinder

with radius b < a and very thin wall.
Determine the radius b such that it is only the TM02 mode that can propagate

from z = 0 to z = L without reflections from the inner cylinder.

Solutions

5.1

We analyze a TM-mode here. The analysis of the TE-mode is done in the same
manner.

For a TM-mode in a planar waveguide the electric field reads, cf section 5.5.1:

En(r) = (ETn(y) + vn(y)ẑ)eikznz

where

vn(y) =

√

2

b
sin ktny

ETn(y) = i
kzn

k2
tn

∇T vn(y) = iŷ
kzn

ktn

√

2

b
cos ktny

The electric field then reads

En(r) =

√

2

b

1

ktn
(ŷikzn cos ktny + ẑktn sin ktny) eikznz

=

√

2

b

i

2ktn

(

(0, kzn,−ktn)ei(ktny+kznz) + (0, kzn, ktn)ei(−ktny+kznz)
)

We se that the field consists of two planar transverse waves with direction of prop-
agation k̂1 = (0, ktn, kzn)/k respektive k̂2 = (0,−ktn, kzn)/k and with the electric
fields in the direction k̂1 × x̂ and k̂2 × x̂, respectively.

We need to determine the corresponding magnetic fields by using the plane wave
relation H = η−1

0 k̂ × E for each of the two plane waves. This gives

Hn(r) = −η−1
0

√

2

b

i

2ktn

1

k

(

(k2
tn + k2

zn, 0, 0)ei(ktny+kznz) + (k2
tn + k2

zn, 0, 0)ei(−ktny+kznz)
)

= −x̂η−1
0

√

2

b

i

ktn

k cos ktnyeikznz
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This gives the same function as in equation 5.24 i.e.,

Hn(r) = η−1
0

i

k2
tn

kǫẑ ×∇T vn(ρ)

= −x̂η−1
0

√

2

b

i

ktn

k cos ktnyeikznz

5.2

Assume a waveguide mode that is propagating in the positive z-direction in a con-
ducting material with Imǫµ > 0. The time average of the power transported by the
modes is, cf., page 117

P = ReP E
nν |a+

nν|2e−2Imkznz

where P E
nν is given by equation 5.36

P E
nν =

ω

k2
tn(ω)

{

kznǫ0ǫ
∗ ν = TM

k∗

znµ0µ ν = TE

For a passive material Reǫµ > 0, Imǫµ > 0 and

kzn =
√

k2 − k2
tn =

√

ω2(Re{ǫµ} + iIm{ǫµ})/c2
0 − k2

tn = α + iβ

where α > 0 and β > 0. This implies Rekznǫ
∗ = αReǫ + βImǫ > 0 and ReP E

nTM > 0
and hence P > 0 for TM-modes. In the same manner we can show that ReY E

nTE > 0.
The power transported through a cross section z = z0 of the waveguide for

frequencies below the cut-off frequency is transferred to heat in the region z > z0.

5.4

We only consider TE-modes. For a TE-mode Hz(r) = w(ρ, φ)eikzz where

∇2
T w + k2

t w = 0

∂w

∂ρ
(a, φ) =

∂w

∂φ
(ρ, 0) =

∂w

∂φ
(a, 2π) = 0

w(ρ, φ) finite

Separation of variables w = f(ρ)g(φ) inserted in the Helmholtz equation ∇2
T w +

k2
t w = 0 gives the eigenvalue problem

g′′(φ) + γg(φ) = 0 (0.1)

g′(0) = g′(2π) = 0 (0.2)

Equation (0.1) gives g(φ) = A sin
√

γφ+B cos
√

γφ where equation (0.2) gives A = 0
and γ = (m/2)2, m = 0, 1, . . .. In the ρ-direction we get the Bessel differential
equation

1

ρ

∂

∂ρ
ρ
∂f(ρ)

∂ρ
+

(

k2
t −

(

m

2ρ

)2
)

f(ρ) = 0

f ′(a) = 0
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with the finite solutions

fmn(ρ) = Jm/2(ktρ) = Jm/2(ηm/2,nρ/a)

where J ′

m/2(ηm/2,n) = 0. The normalized modes are given by

wmn = BJm/2(ktmnρ) cos mφ/2

where ktmn = ηm/2,n/a and

B =

√

ǫm

2π





a
∫

0

(

Jm/2(ktmnρ)
)2

ρdρ





−1/2

with ǫm = 2 − δm,0.

Cut-off frequencies

For even m we get the zeros of J ′

m/2 from appendix A. For odd m we can utilize

that J ′

ν(x) = ν
x
Jν(x)− Jν+1(x) and determine the zeros numerically in e.g., Matlab.

This gives the following values of ηm/2,n

n=1 n=2 n=3 n=4
m=0 3.832 7.016 10.17 13.32
m=1 1.1656 4.60 7.79 19.95
m=2 1.841 5.331 8.536 11.71
m=3 2.46 6.03 9.26 12.44

We see that TE1/2,1 has the lowest cut-off frequency f1/2,1 = c01.1656/(2πa).
Without the metal plate, according to table 3.4 in the book, the TE11 mode has the
lowest cut-off frequency f1,1 = c01.841/(2πa). The cut off frequency for the funda-
mental mode is then reduced by almost 40% when the metal plate is introduced.

5.5

We utilize the solution to example 5.6. For z < 0 there is an incident an a reflected
TM-mode and for z > 0 a transmitted TM-mode.

E(r) = E+
nTM(r) + rnE

−

nTM(r)

H(r) = H+
nTM(r) + rnH

−

nTM(r)
z ≤ 0

E(r) = tnE
+
nTM(r)

H(r) = tnH
+
nTM(r)

z ≥ 0

where rn is the reflection coefficient and tn is the transmission coefficient. We let
the amplitude of the incident wave be 1 V/m. The boundary conditions at z = 0
imply that the transverse components of E and H are continuous. Since vn(ρ) and
ktn are independent of z it follows that

kzn(1 + rn) = k̃zntn

1 − rn = ǫtn
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where kzn =
√

(ω/c0)2 − k2
tn and k̃zn =

√

(ω/c0)2ǫ − k2
tn are the longitudinal wave

numbers for z < 0 and z > 0, respectively. The solution is given by

rn =
k̃zn − ǫkzn

k̃zn + ǫkzn

If the TM mode number n is above cut-off then kzn and the mode power Y E
nTM are

real, see equation 5.36. The power transport in the waveguide in the region z < 0
is given by equation (5.36)

Pi − Pr =

∫∫

Ω

ẑ· < S(t) > (r, ω)dxdy = P E
nTM |a+

0TM |2(1 − |rn|2)

where Pi = P E
nTM |a+

0TM |2 is the power of the incident mode and Pr = P E
nTM |a+

0TM |2|rn|2
is the power of the reflected mode. Thus

Pr

Pi
= |rn|2

It is given that a = 4cm, b = 3cm and ǫ = 2. The fundamental TM-mode is TM11.
The frequency is chosen such that it is the same as the cut-off frequency for the
second TM-mode, i.e., TM21 that has k2

t21 = (2π/a)2 + (π/b)2. For z < 0 this
corresponds to the frequency

f21 = kt21
c0

2π
= 9GHz

This gives
Pr

Pi

= 6.1 · 10−3

b) Pr = 0 when r11 = 0 i.e., when k̃zn = ǫkzn. This gives

f =
1

2π

√

1 + ǫ

ǫ
c0kt11

The numerical value is f = 7.65 GHz.

5.6

a) We first determine the modes that can propagate when a = 3 cm and f = 5 GHz.
The lowest cut off frequencies are obtained from the tables of zeros for Jm(x) (för
TM) and J ′

m(x) (för TE) in appendix A

fTE
11 =

c0

2π

1.841

3
102 = 2.93 GHz < 5 GHz (0.3)

fTE
21 =

c0

2π

3.053

3
102 = 4.86 GHz < 5 GHz (0.4)

fTM
01 =

c0

2π

2.405

3
102 = 3.83 GHz < 5 GHz (0.5)
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The next modes are fTE
01 and fTM

11 which both are non-propagating modes since they
have cut off frequency 6.1 GHz.

b) The waveguide is filled with a plastic material with σ = 10−11 S and ε = 3. The
z-dependence of the fundamental mode TE11 is given by eikzz where kz =

√

k2 − k2
t11.

The wave number k is given by

k2 =

(

ω

c0

)2

ǫny =

(

ω

c0

)2(

ǫ + i
σ

ωǫ0

)

It is seen that σ/(ǫǫ0) ≈ 10−11/(3·8.854 10−12) In the microwave region σ/(ωǫǫ0) ≪
1 and the following approximations are valid

kz = (k2 − k2
t11)

1/2 =

(

(

ω

c0

)2

ǫ − k2
t11

)1/2
(

1 + i
σωµ0

((ω/c0)2ǫ − k2
t11)

)1/2

≈
(

(

ω

c0

)2

ǫ − k2
t11

)1/2
(

1 + i
σωµ0

2((ω/c0)2ǫ − k2
t11)

)

and hence kz = Re(kz) + i Im(kz) where

Im(kz) =
σωµ0

2

(

(ω/c0)
2ǫ − k2

t11

)

−1/2
=

ση

2

(

1 − (fc/f)2
)

−1/2

where fc = c0ξ11/(2πa
√

ǫ) och η =
√

µ0/(ǫǫ0) =wave impedance. The numerical
value is fc = 1.7 GHz.

5.7

For the TE10-mode the electric field in the region z < 0 is

E(r) = ŷE0 sin
πx

a
eikzz

This is the fundamental mode with cut-off frequency fc = 0.5c0/b = 2.5 GHz. When
this mode hits the plate it couples to the TEm0-modes in z > 0 and to the reflected
TEm0-modes in z < 0.

Assume that x0 > a/2. The fundamental mode in z > 0, x < x0 is TE10. This
mode has the cut-off frequency fc = 0.5c0/x0.

a) According to the text, power propagates in z > 0 for frequencies above 3.75
GHz. This means that 3.75 GHz is the cut-off frequency for the fundamental
mode TE10 in x < x0. Hence the plate is placed at x0 = 0.5c0/fc = 0.5 · 3 ·
108/3.75 · 109 = 4 cm.

b) The electric for the TE03-mode in z < 0

E(r) = x̂E0 sin
3πy

b
eikzz

and then the boundary condition at x = x0 is already satisfied since the
tangential component is zero. Thus Pr/Pi = 0. The corresponding cut-off
frequency is at fc = 3 · 0.5 · c0/b = 15 GHz and hence the mode propagates at
20 GHz.
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c) The electric field for the TE30-mode in z < 0 is

E(r) = ŷE0 sin
3πx

a
eikzz

The corresponding cut-off frequency is at fc = 3·0.5·c0/a = 7.7 GHz and hence
the mode propagates at 10 GHz. At x = x0 = 4 cm we see that E(x0, z) = 0

for the TE30-mode. The electric field satisfies the correct boundary conditions
on the plate x = x0. this means that this mode is not affected by the plate and
it continues to propagate in z > 0, without a reflected wave.Hence Pr/Pi = 0.

Comment In z > 0 the mode TE30 splits up in a TE20-mode in the region
x < x0 and one TE10-mode in x0 < x < a.

5.8

A quarter circle
TM-modes:
Ez(r) = v(ρ)eikzz where v satisfies











∇2
T v(ρ) + k2

t v(ρ) = 0

v(R, φ) = v(ρ, 0) = v(ρ, π/2) = 0

v(ρ) begränsad

Separation of variables v(ρ) = f(ρ)g(φ) gives

g′′(φ) + γg(φ) = 0

g(0) = g(π/2) = 0

⇒ g(φ) = sin(2mφ), γ = 4m2

In the ρ-direction we get the Bessel differential equation of order 2m











1

ρ

∂

∂ρ
ρ
∂f(ρ)

∂ρ
+

(

k2
t −

(

2m

ρ

)2
)

= 0

f(R) = 0 |f(0)| < ∞

this gives f(ρ) = J2m(ξ2m,nρ/R) and k2
t = (ξ2m,n/R)2, where J2m(ξ2m,n) = 0.

The normalized eigenfunctions for the TM-modes are given by

v2m,n(ρ) =

√

2

π

J2m(ξ2m,nρ/R)

RJ ′

2m(ξ2m,n)
sin 2mφ

TE-modes:
Hz(r) = w(ρ)eikzz
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We get the same problem as in the TE-case except that the boundary conditions
are

∂w(R, φ)

∂ρ
= 0,

∂w(ρ, 0)

∂φ
=

∂w(ρ, π/2)

∂φ
= 0

This gives the eigenfunctions

w2m,n(ρ) =

√

ǫm

π

η2m,nJ2m(η2m,nρ/R)
√

η2
2m,n − 4m2RJ2m(η2m,n)

cos 2mφ

and the eigenvalues k2
t = (η2m,n/R)2 where J ′

2m(η2m,n) = 0, m = 0, 1, 2.., n = 1, 2, ...

6.3

a) The complex electric field is E = E(ρ)ẑ and satisfies the equation

∇2E + k2E = 0

which leads to the Bessel differential equation of order 0:

1

ρ

∂

∂ρ
ρ
∂E(ρ)

∂ρ
+ k2E(ρ) = 0

The only condition is that Eis bounded everywhere. This gives the solution

E(ρ) = E0J0(kρ)ẑ

where E0 = |E0|eiα. In the time domain

E(ρ, t) = Re{E(ρ)e−iωt} = |E0|J0(kρ) cos(ωt − α)ẑ

The corresponding magnetic field is obtained from the induction law

H(ρ) = − i
1

ωµ0
∇× E(ρ) = iφ̂

1

ωµ0

∂E(ρ)

∂ρ

= iφ̂
k

ωµ0

E0J
′

0(kρ) = −iφ̂E0
1

η0

J1(kρ)

which gives the time domain dependence

H(ρ, t) = −φ̂|E0|
1

η0

J1(kρ) sin(ωt − α)

b) The boundary condition is E(a) = 0 Which means that only frequencies that

satisfy
J0(ka) = 0

are valid. This gives the resonance frequencies

fc =
c

2π

ξ0,n

a
, n = 1, 2, 3...

where J0(ξ0,n) = 0. The electric field E(r) = E0J0(kρ)ẑ is a field that can exist in
a cylindric cavity.
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V3.1

The TM02 mode has Ez(r) = v02(ρ)eikzz where v02(ρ) = A02J0

(

ξ02ρ

a

)

. However

J0

(

ξ02ρ

a

)

is also zero when

(

ξ02ρ

a

)

= ξ01. This means that Ez is zero at ρ =
ξ01

ξ02
a.

The boundary condition that the tangential component of E is zero at ρ = b is then

satisfied if b =
ξ01

ξ02
a = 2.405a/5.520 = 0.437a. The transverse part of the electric

field is directed in the radial direction and is not affected by the boundary at ρ = b.


