Microwave theory 2014: Problems week 3

Problems

Problems 5.1, 5.2, 5.4-5.8 and 6.3 in the book.

Problem V3.1

A circular waveguide of length 0 < z < L and radius a has a non-reflecting termina-

tion at z = L. In the region — < z < 3 one has inserted a circular metal cylinder

with radius b < a and very thin wall.
Determine the radius b such that it is only the TMy, mode that can propagate
from z = 0 to z = L without reflections from the inner cylinder.

Solutions
5.1

We analyze a TM-mode here. The analysis of the TE-mode is done in the same
manner.
For a TM-mode in a planar waveguide the electric field reads, cf section 5.5.1:

En(’l") = (ETn(y) + Un(y)ﬁ)eikmz

2 .
va(y) = \/;sm kiny

Ern(y) = lk—glVTUn(y) =1y o \/;COS kiny

where

The electric field then reads

21 .
E,r) = \/;k_ (k2 COS kpnyy + 2k, sin kypy) €757
tn
2 1 : :
_ \/;2]{1: ((0’ kzna _ktn)el(kmy-‘rkznz) + (0’ kzna ktn)el(—kmy-i-kznz))
tn

We se that the field consists of two planar transverse waves with direction of prop-
agation ky = (0, ky, k.n)/k respektive ky = (0, —kyn, k.n)/k and with the electric
fields in the direction &, x # and ks X &, respectively.

We need to determine the corresponding magnetic fields by using the plane wave
relation H = 7, 'k x E for each of the two plane waves. This gives

2 i1 . .
H,(r) = —770_1\/;2]; 7 ((ktzn + k2 ,0,0)ekemythenz) (g2 4 g2 (), O)el(_ktnﬁksz))
2 i .
= —any! 21 kcos kynye®er?

b ktn



This gives the same function as in equation 5.24 i.e.,

1
H,(r) = no_lk—zkez x Vru,(p)

tn

5.2

Assume a waveguide mode that is propagating in the positive z-direction in a con-
ducting material with Imey > 0. The time average of the power transported by the
modes is, cf., page 117

P = RePE

+ |26—2Imkznz
vI%ny

la

where PE is given by equation 5.36

PE _ w {kzneoe* v=TM

" kt2n (w) k:jn:u(]:u v=TE

For a passive material Reeyr > 0, Imep > 0 and

ban = VB = K, =\ (Re{en} + ilmep}) /= k2, = a +19

where o > 0 and 8 > 0. This implies Rek.,e* = aRee + flme > 0 and RePZ.,, > 0

and hence P > 0 for TM-modes. In the same manner we can show that ReY,%., > 0.
The power transported through a cross section z = z; of the waveguide for

frequencies below the cut-off frequency is transferred to heat in the region z > 2.

5.4
We only consider T'E-modes. For a T E-mode H.(r) = w(p, ¢)e*=* where

Viw + kw = 0
ow ow ow
8—p(a7 (b) - %(pu O) - 8—¢(a7 27T) -

w(p, ¢) finite

Separation of variables w = f(p)g(¢) inserted in the Helmholtz equation Viw +
k2w = 0 gives the eigenvalue problem

9"(¢) +79(¢) =0 (0.1)
9'(0)=g'(2m) =0 (0.2)
Equation (0.1) gives g(¢) = Asin \/y¢+ B cos \/7¢ where equation (0.2) gives A = 0
and v = (m/2)%, m = 0,1,.... In the p-direction we get the Bessel differential

equation

10 fp) (2 (m) _
00" 0 (k -(5) )M‘O

f'(a) =0



with the finite solutions

frn(p) = Jm/2(ktp) = Jm/2(77m/2,np/a)

where J/ /g(ﬁm/zn) = 0. The normalized modes are given by

Winn = B2 (kgmnp) cosme/2
where Eypp = 1m/2,n/a and

~1/2

0

with €, =2 — 0 0.

Cut-off frequencies

For even m we get the zeros of J/ /2 from appendix A. For odd m we can utilize
that J),(z) = 2J,(z) — J,11(x) and determine the zeros numerically in e.g., Matlab.
This gives the following values of 1,,/2.
n=1 n=2 | n=3 |n=4
3.832 | 7.016 | 10.17 | 13.32
1.1656 | 4.60 | 7.79 | 19.95
1.841 | 5.331 | 8.536 | 11.71
m=3 | 2.46 6.03 [9.26 |12.44
We see that T'E,/5; has the lowest cut-off frequency fi/21 = ¢01.1656/(2ma).
Without the metal plate, according to table 3.4 in the book, the T'E;; mode has the
lowest cut-off frequency fi11 = ¢91.841/(2ma). The cut off frequency for the funda-
mental mode is then reduced by almost 40% when the metal plate is introduced.
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5.5

We utilize the solution to example 5.6. For z < 0 there is an incident an a reflected
T M-mode and for z > 0 a transmitted 7'M-mode.

E(r) = E} (1) + ma By (r)

N z2<0
H(r) = H:TM(T) + 1o H g (T)

E(r) =t By (r)
H(r) = th:L_TM(T)
where r,, is the reflection coefficient and ¢,, is the transmission coefficient. We let
the amplitude of the incident wave be 1 V/m. The boundary conditions at z = 0

imply that the transverse components of E and H are continuous. Since v,(p) and
k:, are independent of z it follows that

z>0

1—r,=c¢t,



where k., = \/(w/co)? — k2, and k., = \/(w/co)%€ — k2, are the longitudinal wave
numbers for z < 0 and z > 0, respectively. The solution is given by
]%zn - Ekzn

T =

If the TM mode number n is above cut-off then k., and the mode power Y%, are
real, see equation 5.36. The power transport in the waveguide in the region z < 0
is given by equation (5.36)

P, —-P = // 2. < S(t) > (r,w)dzxdy = Prg“M|a3_TM|2(1 — |rn|2)
Q

where P, = PZ., ladr,,|? is the power of the incident mode and P, = P%./|adras [ ra)?
is the power of the reflected mode. Thus

P,
E = |rn|2

It is given that a = 4cm, b = 3cm and € = 2. The fundamental TM-mode is TMy;.
The frequency is chosen such that it is the same as the cut-off frequency for the
second TM-mode, i.e., T My that has k3, = (27/a)* + (7/b)*>. For z < 0 this
corresponds to the frequency

for = k‘mg—o = 9GHz
T

This gives
=6.1-107°

& JIJ|“U

b) P. =0 when 1 =0 i.e., when &

I1+e€
f— 2— cokinn
™

The numerical value is f = 7.65 GHz.

n = €k.,. This gives

5.6

a) We first determine the modes that can propagate when ¢ = 3 cm and f = 5 GHz.
The lowest cut off frequencies are obtained from the tables of zeros for J,,(x) (for
M) and J] (x) (fér TFE) in appendix A

R 200102 = 2.93GHz < 5 GHz (0.3)
3.053

T5 _ ng? — 4.86 GHz < 5GHz (0.4)
2.4

T _ 0240502 5 03 GH, < 5 GHy (0.5)

01 27'('



The next modes are f@¥ and f{;™ which both are non-propagating modes since they
have cut off frequency 6.1 GHz.
b) The waveguide is filled with a plastic material with o = 107!* Sand e = 3. The

z-dependence of the fundamental mode T'Ey; is given by =% where k, = \/k2? — k2,
The wave number k is given by

w 2 w 2 g
Co Co WEQ

It is seen that o /(eep) ~ 107 /(3-8.854 10712) In the microwave region o /(weeg) <
1 and the following approximations are valid
1/2

, 1/2
(12 2 /2 _ w — k2 1+1 el
k, = (k" — ki) ((CO) € kﬂl) <+1((W/Co)2€—kt211)
1/2

~ ((;"—0)2 € — kfu) <1 + ig((w/cz;ﬁo— k:?u)>

and hence k, = Re(k,) + iIm(k,) where

(k) = 255 (w/eo)e = ki) " = T (1= (/%)

where f, = co&11/(2mar/€) och n = \/uo/(eey) =wave impedance. The numerical
value is f. = 1.7 GHz.

5.7
For the TE;g-mode the electric field in the region z < 0 is
E(r) = gEjsin T ks
a

This is the fundamental mode with cut-off frequency f. = 0.5¢y/b = 2.5 GHz. When
this mode hits the plate it couples to the TE,,o-modes in z > 0 and to the reflected
TE,,,o-modes in z < 0.

Assume that o > a/2. The fundamental mode in z > 0, x < xy is TE;q. This
mode has the cut-off frequency f, = 0.5¢q/ 0.

a) According to the text, power propagates in z > 0 for frequencies above 3.75
GHz. This means that 3.75 GHz is the cut-off frequency for the fundamental
mode TEjq in z < xy. Hence the plate is placed at o = 0.5¢y/f. = 0.5-3 -
108/3.75 - 10° = 4 cm.

b) The electric for the TEg3-mode in z < 0

3y .
E(r) = tEysin Tye‘k”
and then the boundary condition at z = x( is already satisfied since the
tangential component is zero. Thus P,/P; = 0. The corresponding cut-off

frequency is at f. =3-0.5-¢o/b =15 GHz and hence the mode propagates at
20 GHz.



c¢) The electric field for the TEz-mode in z < 0 is

3
E(r) = §Eysin 2L ¢ik==
a

The corresponding cut-off frequency is at f. = 3-0.5-¢o/a = 7.7 GHz and hence
the mode propagates at 10 GHz. At x = 2 = 4 cm we see that E(xg,2) =0
for the TE3p-mode. The electric field satisfies the correct boundary conditions
on the plate x = xy. this means that this mode is not affected by the plate and
it continues to propagate in z > 0, without a reflected wave.Hence P,./P; = 0.

Comment In z > 0 the mode TE3, splits up in a TE;)-mode in the region
T < 2o and one TE;y-mode in 2o < = < a.

5.8

A quarter circle
TM-modes:
E.(r) = v(p)et*=* where v satisfies

Viu(p) + kiv(p) =0
v(R,¢) =v(p,0) =v(p,7/2) =0
v(p) begransad

Separation of variables v(p) = f(p)g(¢) gives

9" (®) +v9(0) =0
9(0) = g(m/2) =0

= g(¢) = sin(2mo), = 4m’

In the p-direction we get the Bessel differential equation of order 2m

L0 0fp) [ (2N _
pop” dp +<kt (p)) ’
f(R)=0 [f(0)] <oo

this gives f(p) = J2m(£2m,np/R) and k? = (£2m,n/R)27 where J2m(£2m,n) = 0.
The normalized eigenfunctions for the TM-modes are given by

- 2 J2m(§2m,np/R) .
U2m,n(p) = \/; Rjém(&m,n) sin 2meo

TE-modes:
H.(r) = w(p)e’*



We get the same problem as in the TE-case except that the boundary conditions
are

ow(R,¢) 0 ow(p,0)  Ow(p,m/2)
op 7 06 13l0)

This gives the eigenfunctions

Wamn(p \/ e 2m (emnp/ F) cost<;$

\/ n2m n 4m2RJ2m 772m n

and the eigenvalues k? = (99, /R)? where Jb (nomn) =0, m=0,1,2.., n=1,2,...

=0

6.3
a) The complex electric field is E = F(p)Z and satisfies the equation
V’E+KE =0
which leads to the Bessel differential equation of order 0:
10 0E(p)

—p—
pOp~ Op
The only condition is that Fis bounded everywhere. This gives the solution

E(p) = EyJo(kp)z

+kE(p) =0

where Fy = |Eple’®. In the time domain
E(p,t) = Re{E(p)e ™"} = |Eo| Jo(kp) cos(wt — o) 2

The corresponding magnetic field is obtained from the induction law

~ 1 9E(p)
H(p)=—i—V x E(p) = ip— 2P
(p) ZW,MO (p) T
~ 1
ZCZS—EOJo(kP) —i¢pEo—Ji(kp)
wHo "o

which gives the time domain dependence
~ 1 .
H(p,t) = —¢\Eo\n—J1(kp) sin(wt — a)
0

b) The boundary condition is E(a) = 0 Which means that only frequencies that

satisfy
Jo(ka) =0
are valid. This gives the resonance frequencies
fooC%n g
2T a

where Jy(& ) = 0. The electric field E(r) = EyJo(kp)Z2 is a field that can exist in
a cylindric cavity.



V3.1

The TMg, mode has E.(r) = voa(p)et=* where vga(p) = Aga2Jo (@) However
a

= &o1. This means that E, is zero at p = g—a.
02

The boundary condition that the tangential component of E is zero at p = b is then

satisfied if b = @a = 2.405a/5.520 = 0.437a. The transverse part of the electric

Jo <€0—2p is also zero when &)—QP
a a

02
field is directed in the radial direction and is not affected by the boundary at p = b.



