Microwave theory 2014: Problems week 3

Problems

Problems 5.1, 5.2, 5.4-5.8 and 6.3 in the book.

Problem V3.1

A circular waveguide of length $0<z<L$ and radius a has a non-reflecting termination at $z=L$. In the region $\frac{L}{4}<z<\frac{L}{2}$ one has inserted a circular metal cylinder with radius $b<a$ and very thin wall.

Determine the radius b such that it is only the TM_{02} mode that can propagate from $z=0$ to $z=L$ without reflections from the inner cylinder.

Solutions

5.1

We analyze a TM-mode here. The analysis of the TE-mode is done in the same manner.

For a TM-mode in a planar waveguide the electric field reads, cf section 5.5.1:

$$
\boldsymbol{E}_{n}(\boldsymbol{r})=\left(\boldsymbol{E}_{T n}(y)+v_{n}(y) \hat{z}\right) e^{\mathrm{i} k_{z n} z}
$$

where

$$
\begin{aligned}
& v_{n}(y)=\sqrt{\frac{2}{b}} \sin k_{t n} y \\
& \boldsymbol{E}_{T n}(y)=\mathrm{i} \frac{k_{z n}}{k_{t n}^{2}} \nabla_{T} v_{n}(y)=\mathrm{i} \hat{y} \frac{k_{z n}}{k_{t n}} \sqrt{\frac{2}{b}} \cos k_{t n} y
\end{aligned}
$$

The electric field then reads

$$
\begin{aligned}
\boldsymbol{E}_{n}(\boldsymbol{r}) & =\sqrt{\frac{2}{b}} \frac{1}{k_{t n}}\left(\hat{y} \mathrm{i} k_{z n} \cos k_{t n} y+\hat{z} k_{t n} \sin k_{t n} y\right) e^{\mathrm{i} k_{z n} z} \\
& =\sqrt{\frac{2}{b}} \frac{\mathrm{i}}{2 k_{t n}}\left(\left(0, k_{z n},-k_{t n}\right) e^{\mathrm{i}\left(k_{t n} y+k_{z n} z\right)}+\left(0, k_{z n}, k_{t n}\right) e^{\mathrm{i}\left(-k_{t n} y+k_{z n} z\right)}\right)
\end{aligned}
$$

We se that the field consists of two planar transverse waves with direction of propagation $\hat{k}_{1}=\left(0, k_{t n}, k_{z n}\right) / k$ respektive $\hat{k}_{2}=\left(0,-k_{t n}, k_{z n}\right) / k$ and with the electric fields in the direction $\hat{k}_{1} \times \hat{x}$ and $\hat{k}_{2} \times \hat{x}$, respectively.

We need to determine the corresponding magnetic fields by using the plane wave relation $\boldsymbol{H}=\eta_{0}^{-1} \hat{k} \times \boldsymbol{E}$ for each of the two plane waves. This gives

$$
\begin{aligned}
\boldsymbol{H}_{n}(\boldsymbol{r}) & =-\eta_{0}^{-1} \sqrt{\frac{2}{b}} \frac{\mathrm{i}}{2 k_{t n}} \frac{1}{k}\left(\left(k_{t n}^{2}+k_{z n}^{2}, 0,0\right) e^{\mathrm{i}\left(k_{t n} y+k_{z n} z\right)}+\left(k_{t n}^{2}+k_{z n}^{2}, 0,0\right) e^{\mathrm{i}\left(-k_{t n} y+k_{z n} z\right)}\right) \\
& =-\hat{x} \eta_{0}^{-1} \sqrt{\frac{2}{b}} \frac{\mathrm{i}}{k_{t n}} k \cos k_{t n} y \mathrm{e}^{\mathrm{i} k_{z n} z}
\end{aligned}
$$

This gives the same function as in equation 5.24 i.e.,

$$
\begin{aligned}
\boldsymbol{H}_{n}(\boldsymbol{r}) & =\eta_{0}^{-1} \frac{\mathrm{i}}{k_{t n}^{2}} k \epsilon \hat{z} \times \nabla_{T} v_{n}(\boldsymbol{\rho}) \\
& =-\hat{x} \eta_{0}^{-1} \sqrt{\frac{2}{b}} \frac{\mathrm{i}}{k_{t n}} k \cos k_{t n} y e^{\mathrm{i} k_{z n} z}
\end{aligned}
$$

5.2

Assume a waveguide mode that is propagating in the positive z-direction in a conducting material with $\operatorname{Im} \epsilon \mu>0$. The time average of the power transported by the modes is, cf., page 117

$$
P=\operatorname{Re} P_{n \nu}^{E}\left|a_{n \nu}^{+}\right|^{2} e^{-2 \operatorname{Im} k_{z n} z}
$$

where $P_{n \nu}^{E}$ is given by equation 5.36

$$
P_{n \nu}^{E}=\frac{\omega}{k_{t n}^{2}(\omega)} \begin{cases}k_{z n} \epsilon_{0} \epsilon^{*} & \nu=\mathrm{TM} \\ k_{z n}^{*} \mu_{0} \mu & \nu=\mathrm{TE}\end{cases}
$$

For a passive material $\operatorname{Re} \epsilon \mu>0, \operatorname{Im} \epsilon \mu>0$ and

$$
k_{z n}=\sqrt{k^{2}-k_{t n}^{2}}=\sqrt{\omega^{2}(\operatorname{Re}\{\epsilon \mu\}+\mathrm{i} \operatorname{Im}\{\epsilon \mu\}) / c_{0}^{2}-k_{t n}^{2}}=\alpha+\mathrm{i} \beta
$$

where $\alpha>0$ and $\beta>0$. This implies $\operatorname{Re} k_{z n} \epsilon^{*}=\alpha \operatorname{Re} \epsilon+\beta \operatorname{Im} \epsilon>0$ and $\operatorname{Re} P_{n T M}^{E}>0$ and hence $P>0$ for TM-modes. In the same manner we can show that $\operatorname{Re} Y_{n T E}^{E}>0$.

The power transported through a cross section $z=z_{0}$ of the waveguide for frequencies below the cut-off frequency is transferred to heat in the region $z>z_{0}$.

5.4

We only consider $T E$-modes. For a $T E$-mode $H_{z}(\boldsymbol{r})=w(\rho, \phi) e^{i k_{z} z}$ where

$$
\begin{aligned}
& \nabla_{T}^{2} w+k_{t}^{2} w=0 \\
& \frac{\partial w}{\partial \rho}(a, \phi)=\frac{\partial w}{\partial \phi}(\rho, 0)=\frac{\partial w}{\partial \phi}(a, 2 \pi)=0 \\
& w(\rho, \phi) \text { finite }
\end{aligned}
$$

Separation of variables $w=f(\rho) g(\phi)$ inserted in the Helmholtz equation $\nabla_{T}^{2} w+$ $k_{t}^{2} w=0$ gives the eigenvalue problem

$$
\begin{align*}
& g^{\prime \prime}(\phi)+\gamma g(\phi)=0 \tag{0.1}\\
& g^{\prime}(0)=g^{\prime}(2 \pi)=0 \tag{0.2}
\end{align*}
$$

Equation (0.1) gives $g(\phi)=A \sin \sqrt{\gamma} \phi+B \cos \sqrt{\gamma} \phi$ where equation (0.2) gives $A=0$ and $\gamma=(m / 2)^{2}, m=0,1, \ldots$. In the ρ-direction we get the Bessel differential equation

$$
\begin{aligned}
& \frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial f(\rho)}{\partial \rho}+\left(k_{t}^{2}-\left(\frac{m}{2 \rho}\right)^{2}\right) f(\rho)=0 \\
& f^{\prime}(a)=0
\end{aligned}
$$

with the finite solutions

$$
f_{m n}(\rho)=J_{m / 2}\left(k_{t} \rho\right)=J_{m / 2}\left(\eta_{m / 2, n} \rho / a\right)
$$

where $J_{m / 2}^{\prime}\left(\eta_{m / 2, n}\right)=0$. The normalized modes are given by

$$
w_{m n}=B J_{m / 2}\left(k_{t m n} \rho\right) \cos m \phi / 2
$$

where $k_{t m n}=\eta_{m / 2, n} / a$ and

$$
B=\sqrt{\frac{\epsilon_{m}}{2 \pi}}\left(\int_{0}^{a}\left(J_{m / 2}\left(k_{t m n} \rho\right)\right)^{2} \rho d \rho\right)^{-1 / 2}
$$

with $\epsilon_{m}=2-\delta_{m, 0}$.

Cut-off frequencies

For even m we get the zeros of $J_{m / 2}^{\prime}$ from appendix A. For odd m we can utilize that $J_{\nu}^{\prime}(x)=\frac{\nu}{x} J_{\nu}(x)-J_{\nu+1}(x)$ and determine the zeros numerically in e.g., Matlab. This gives the following values of $\eta_{m / 2, n}$

	$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
$\mathrm{~m}=0$	3.832	7.016	10.17	13.32
$\mathrm{~m}=1$	1.1656	4.60	7.79	19.95
$\mathrm{~m}=2$	1.841	5.331	8.536	11.71
$\mathrm{~m}=3$	2.46	6.03	9.26	12.44

We see that $T E_{1 / 2,1}$ has the lowest cut-off frequency $f_{1 / 2,1}=c_{0} 1.1656 /(2 \pi a)$. Without the metal plate, according to table 3.4 in the book, the $T E_{11}$ mode has the lowest cut-off frequency $f_{1,1}=c_{0} 1.841 /(2 \pi a)$. The cut off frequency for the fundamental mode is then reduced by almost 40% when the metal plate is introduced.

5.5

We utilize the solution to example 5.6. For $z<0$ there is an incident an a reflected $T M$-mode and for $z>0$ a transmitted $T M$-mode.

$$
\begin{aligned}
\boldsymbol{E}(\boldsymbol{r}) & =\boldsymbol{E}_{n T M}^{+}(\boldsymbol{r})+r_{n} \boldsymbol{E}_{n T M}^{-}(\boldsymbol{r}) \\
\boldsymbol{H}(\boldsymbol{r}) & =\boldsymbol{H}_{n T M}^{+}(\boldsymbol{r})+r_{n} \boldsymbol{H}_{n T M}^{-}(\boldsymbol{r}) \quad z \leq 0 \\
& \boldsymbol{E}(\boldsymbol{r})=t_{n} \boldsymbol{E}_{n T M}^{+}(\boldsymbol{r}) \quad z \geq 0
\end{aligned}
$$

where r_{n} is the reflection coefficient and t_{n} is the transmission coefficient. We let the amplitude of the incident wave be $1 \mathrm{~V} / \mathrm{m}$. The boundary conditions at $z=0$ imply that the transverse components of \boldsymbol{E} and \boldsymbol{H} are continuous. Since $v_{n}(\boldsymbol{\rho})$ and $k_{t n}$ are independent of z it follows that

$$
\begin{aligned}
& k_{z n}\left(1+r_{n}\right)=\tilde{k}_{z n} t_{n} \\
& 1-r_{n}=\epsilon t_{n}
\end{aligned}
$$

where $k_{z n}=\sqrt{\left(\omega / c_{0}\right)^{2}-k_{t n}^{2}}$ and $\tilde{k}_{z n}=\sqrt{\left(\omega / c_{0}\right)^{2} \epsilon-k_{t n}^{2}}$ are the longitudinal wave numbers for $z<0$ and $z>0$, respectively. The solution is given by

$$
r_{n}=\frac{\tilde{k}_{z n}-\epsilon k_{z n}}{\tilde{k}_{z n}+\epsilon k_{z n}}
$$

If the $T M$ mode number n is above cut-off then $k_{z n}$ and the mode power $Y_{n T M}^{E}$ are real, see equation 5.36. The power transport in the waveguide in the region $z<0$ is given by equation (5.36)

$$
P_{i}-P_{r}=\iint_{\Omega} \hat{z} \cdot<\boldsymbol{S}(t)>(\boldsymbol{r}, \omega) d x d y=P_{n T M}^{E}\left|a_{0 T M}^{+}\right|^{2}\left(1-\left|r_{n}\right|^{2}\right)
$$

where $P_{i}=P_{n T M}^{E}\left|a_{0 T M}^{+}\right|^{2}$ is the power of the incident mode and $P_{r}=P_{n T M}^{E}\left|a_{0 T M}^{+}\right|^{2}\left|r_{n}\right|^{2}$ is the power of the reflected mode. Thus

$$
\frac{P_{r}}{P_{i}}=\left|r_{n}\right|^{2}
$$

It is given that $a=4 c m, b=3 \mathrm{~cm}$ and $\epsilon=2$. The fundamental TM-mode is TM_{11}. The frequency is chosen such that it is the same as the cut-off frequency for the second TM-mode, i.e., $T M_{21}$ that has $k_{t 21}^{2}=(2 \pi / a)^{2}+(\pi / b)^{2}$. For $z<0$ this corresponds to the frequency

$$
f_{21}=k_{t 21} \frac{c_{0}}{2 \pi}=9 \mathrm{GHz}
$$

This gives

$$
\frac{P_{r}}{P_{i}}=6.1 \cdot 10^{-3}
$$

b) $P_{r}=0$ when $r_{11}=0$ i.e., when $\tilde{k}_{z n}=\epsilon k_{z n}$. This gives

$$
f=\frac{1}{2 \pi} \sqrt{\frac{1+\epsilon}{\epsilon}} c_{0} k_{t 11}
$$

The numerical value is $f=7.65 \mathrm{GHz}$.

5.6

a) We first determine the modes that can propagate when $a=3 \mathrm{~cm}$ and $f=5 \mathrm{GHz}$. The lowest cut off frequencies are obtained from the tables of zeros for $J_{m}(x)$ (för $T M)$ and $J_{m}^{\prime}(x)$ (för $T E$) in appendix A

$$
\begin{align*}
& f_{11}^{T E}=\frac{c_{0}}{2 \pi} \frac{1.841}{3} 10^{2}=2.93 \mathrm{GHz}<5 \mathrm{GHz} \tag{0.3}\\
& f_{21}^{T E}=\frac{c_{0}}{2 \pi} \frac{3.053}{3} 10^{2}=4.86 \mathrm{GHz}<5 \mathrm{GHz} \tag{0.4}\\
& f_{01}^{T M}=\frac{c_{0}}{2 \pi} \frac{2.405}{3} 10^{2}=3.83 \mathrm{GHz}<5 \mathrm{GHz} \tag{0.5}
\end{align*}
$$

The next modes are $f_{01}^{T E}$ and $f_{11}^{T M}$ which both are non-propagating modes since they have cut off frequency 6.1 GHz .
b) The waveguide is filled with a plastic material with $\sigma=10^{-11} \mathrm{~S}$ and $\varepsilon=3$. The z-dependence of the fundamental mode $T E_{11}$ is given by $e^{\mathrm{i} k_{z} z}$ where $k_{z}=\sqrt{k^{2}-k_{t 11}^{2}}$. The wave number k is given by

$$
k^{2}=\left(\frac{\omega}{c_{0}}\right)^{2} \epsilon_{n y}=\left(\frac{\omega}{c_{0}}\right)^{2}\left(\epsilon+\mathrm{i} \frac{\sigma}{\omega \epsilon_{0}}\right)
$$

It is seen that $\sigma /\left(\epsilon \epsilon_{0}\right) \approx 10^{-11} /\left(3 \cdot 8.85410^{-12}\right)$ In the microwave region $\sigma /\left(\omega \epsilon \epsilon_{0}\right) \ll$ 1 and the following approximations are valid

$$
\begin{aligned}
k_{z} & =\left(k^{2}-k_{t 11}^{2}\right)^{1 / 2}=\left(\left(\frac{\omega}{c_{0}}\right)^{2} \epsilon-k_{t 11}^{2}\right)^{1 / 2}\left(1+\mathrm{i} \frac{\sigma \omega \mu_{0}}{\left(\left(\omega / c_{0}\right)^{2} \epsilon-k_{t 11}^{2}\right)}\right)^{1 / 2} \\
& \approx\left(\left(\frac{\omega}{c_{0}}\right)^{2} \epsilon-k_{t 11}^{2}\right)^{1 / 2}\left(1+\mathrm{i} \frac{\sigma \omega \mu_{0}}{2\left(\left(\omega / c_{0}\right)^{2} \epsilon-k_{t 11}^{2}\right)}\right)
\end{aligned}
$$

and hence $k_{z}=\operatorname{Re}\left(k_{z}\right)+\mathrm{i} \operatorname{Im}\left(k_{z}\right)$ where

$$
\operatorname{Im}\left(k_{z}\right)=\frac{\sigma \omega \mu_{0}}{2}\left(\left(\omega / c_{0}\right)^{2} \epsilon-k_{t 11}^{2}\right)^{-1 / 2}=\frac{\sigma \eta}{2}\left(1-\left(f_{c} / f\right)^{2}\right)^{-1 / 2}
$$

where $f_{c}=c_{0} \xi_{11} /(2 \pi a \sqrt{\epsilon})$ och $\eta=\sqrt{\mu_{0} /\left(\epsilon \epsilon_{0}\right)}=$ wave impedance. The numerical value is $f_{c}=1.7 \mathrm{GHz}$.

5.7

For the TE_{10}-mode the electric field in the region $z<0$ is

$$
\boldsymbol{E}(\boldsymbol{r})=\hat{y} E_{0} \sin \frac{\pi x}{a} e^{i k_{z} z}
$$

This is the fundamental mode with cut-off frequency $f_{c}=0.5 c_{0} / b=2.5 \mathrm{GHz}$. When this mode hits the plate it couples to the $\mathrm{TE}_{m 0}$-modes in $z>0$ and to the reflected $\mathrm{TE}_{m 0}$-modes in $z<0$.

Assume that $x_{0}>a / 2$. The fundamental mode in $z>0, x<x_{0}$ is TE_{10}. This mode has the cut-off frequency $f_{c}=0.5 c_{0} / x_{0}$.
a) According to the text, power propagates in $z>0$ for frequencies above 3.75 GHz . This means that 3.75 GHz is the cut-off frequency for the fundamental mode TE_{10} in $x<x_{0}$. Hence the plate is placed at $x_{0}=0.5 c_{0} / f_{c}=0.5 \cdot 3$. $10^{8} / 3.75 \cdot 10^{9}=4 \mathrm{~cm}$.
b) The electric for the TE_{03}-mode in $z<0$

$$
\boldsymbol{E}(\boldsymbol{r})=\hat{x} E_{0} \sin \frac{3 \pi y}{b} e^{\mathrm{i} k_{z} z}
$$

and then the boundary condition at $x=x_{0}$ is already satisfied since the tangential component is zero. Thus $P_{r} / P_{i}=0$. The corresponding cut-off frequency is at $f_{c}=3 \cdot 0.5 \cdot c_{0} / b=15 \mathrm{GHz}$ and hence the mode propagates at 20 GHz .
c) The electric field for the TE_{30}-mode in $z<0$ is

$$
\boldsymbol{E}(\boldsymbol{r})=\hat{y} E_{0} \sin \frac{3 \pi x}{a} e^{\mathrm{i} k_{z} z}
$$

The corresponding cut-off frequency is at $f_{c}=3 \cdot 0.5 \cdot c_{0} / a=7.7 \mathrm{GHz}$ and hence the mode propagates at 10 GHz . At $x=x_{0}=4 \mathrm{~cm}$ we see that $\boldsymbol{E}\left(x_{0}, z\right)=\mathbf{0}$ for the TE_{30}-mode. The electric field satisfies the correct boundary conditions on the plate $x=x_{0}$. this means that this mode is not affected by the plate and it continues to propagate in $z>0$, without a reflected wave. Hence $P_{r} / P_{i}=0$. Comment $\operatorname{In} z>0$ the mode TE_{30} splits up in a TE_{20}-mode in the region $x<x_{0}$ and one TE_{10}-mode in $x_{0}<x<a$.

5.8

A quarter circle
TM-modes:
$E_{z}(\boldsymbol{r})=v(\boldsymbol{\rho}) e^{i k_{z} z}$ where v satisfies

$$
\left\{\begin{array}{l}
\nabla_{T}^{2} v(\boldsymbol{\rho})+k_{t}^{2} v(\boldsymbol{\rho})=0 \\
v(R, \phi)=v(\rho, 0)=v(\rho, \pi / 2)=0 \\
v(\boldsymbol{\rho}) \text { begränsad }
\end{array}\right.
$$

Separation of variables $v(\boldsymbol{\rho})=f(\rho) g(\phi)$ gives

$$
\begin{aligned}
& g^{\prime \prime}(\phi)+\gamma g(\phi)=0 \\
& g(0)=g(\pi / 2)=0 \\
& \Rightarrow g(\phi)=\sin (2 m \phi), \quad \gamma=4 m^{2}
\end{aligned}
$$

In the ρ-direction we get the Bessel differential equation of order $2 m$

$$
\left\{\begin{array}{l}
\frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial f(\rho)}{\partial \rho}+\left(k_{t}^{2}-\left(\frac{2 m}{\rho}\right)^{2}\right)=0 \\
f(R)=0 \quad|f(0)|<\infty
\end{array}\right.
$$

this gives $f(\rho)=J_{2 m}\left(\xi_{2 m, n} \rho / R\right)$ and $k_{t}^{2}=\left(\xi_{2 m, n} / R\right)^{2}$, where $J_{2 m}\left(\xi_{2 m, n}\right)=0$.
The normalized eigenfunctions for the TM-modes are given by

$$
v_{2 m, n}(\boldsymbol{\rho})=\sqrt{\frac{2}{\pi}} \frac{J_{2 m}\left(\xi_{2 m, n} \rho / R\right)}{R J_{2 m}^{\prime}\left(\xi_{2 m, n}\right)} \sin 2 m \phi
$$

TE-modes:

$$
\overline{H_{z}}(\boldsymbol{r})=w(\boldsymbol{\rho}) e^{i k_{z} z}
$$

We get the same problem as in the TE-case except that the boundary conditions are

$$
\frac{\partial w(R, \phi)}{\partial \rho}=0, \frac{\partial w(\rho, 0)}{\partial \phi}=\frac{\partial w(\rho, \pi / 2)}{\partial \phi}=0
$$

This gives the eigenfunctions

$$
w_{2 m, n}(\boldsymbol{\rho})=\sqrt{\frac{\epsilon_{m}}{\pi}} \frac{\eta_{2 m, n} J_{2 m}\left(\eta_{2 m, n} \rho / R\right)}{\sqrt{\eta_{2 m, n}^{2}-4 m^{2}} R J_{2 m}\left(\eta_{2 m, n}\right)} \cos 2 m \phi
$$

and the eigenvalues $k_{t}^{2}=\left(\eta_{2 m, n} / R\right)^{2}$ where $J_{2 m}^{\prime}\left(\eta_{2 m, n}\right)=0, m=0,1,2 . ., n=1,2, \ldots$

6.3

a) The complex electric field is $\boldsymbol{E}=E(\rho) \hat{z}$ and satisfies the equation

$$
\nabla^{2} \boldsymbol{E}+k^{2} \boldsymbol{E}=0
$$

which leads to the Bessel differential equation of order 0 :

$$
\frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial E(\rho)}{\partial \rho}+k^{2} E(\rho)=0
$$

The only condition is that \boldsymbol{E} is bounded everywhere. This gives the solution

$$
\boldsymbol{E}(\rho)=E_{0} J_{0}(k \rho) \hat{z}
$$

where $E_{0}=\left|E_{0}\right| e^{i \alpha}$. In the time domain

$$
\boldsymbol{E}(\rho, t)=\operatorname{Re}\left\{\boldsymbol{E}(\rho) e^{-i \omega t}\right\}=\left|E_{0}\right| J_{0}(k \rho) \cos (\omega t-\alpha) \hat{z}
$$

The corresponding magnetic field is obtained from the induction law

$$
\begin{aligned}
\boldsymbol{H}(\rho)= & -i \frac{1}{\omega \mu_{0}} \nabla \times \boldsymbol{E}(\rho)=i \hat{\phi} \frac{1}{\omega \mu_{0}} \frac{\partial E(\rho)}{\partial \rho} \\
& =i \hat{\phi} \frac{k}{\omega \mu_{0}} E_{0} J_{0}^{\prime}(k \rho)=-i \hat{\phi} E_{0} \frac{1}{\eta_{0}} J_{1}(k \rho)
\end{aligned}
$$

which gives the time domain dependence

$$
\boldsymbol{H}(\rho, t)=-\hat{\phi}\left|E_{0}\right| \frac{1}{\eta_{0}} J_{1}(k \rho) \sin (\omega t-\alpha)
$$

b) The boundary condition is $E(a)=0$ Which means that only frequencies that
satisfy

$$
J_{0}(k a)=0
$$

are valid. This gives the resonance frequencies

$$
f_{c}=\frac{c}{2 \pi} \frac{\xi_{0, n}}{a}, \quad n=1,2,3 \ldots
$$

where $J_{0}\left(\xi_{0, n}\right)=0$. The electric field $\boldsymbol{E}(\boldsymbol{r})=E_{0} J_{0}(k \rho) \hat{z}$ is a field that can exist in a cylindric cavity.

V3.1

The TM_{02} mode has $E_{z}(\boldsymbol{r})=v_{02}(\rho) e^{\mathrm{i} k_{z} z}$ where $v_{02}(\rho)=A_{02} J_{0}\left(\frac{\xi_{02} \rho}{a}\right)$. However $J_{0}\left(\frac{\xi_{02} \rho}{a}\right)$ is also zero when $\left(\frac{\xi_{02} \rho}{a}\right)=\xi_{01}$. This means that E_{z} is zero at $\rho=\frac{\xi_{01}}{\xi_{02}} a$. The boundary condition that the tangential component of \boldsymbol{E} is zero at $\rho=b$ is then satisfied if $b=\frac{\xi_{01}}{\xi_{02}} a=2.405 a / 5.520=0.437 a$. The transverse part of the electric field is directed in the radial direction and is not affected by the boundary at $\rho=b$.

