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Microwave theory 2014: Problems for week 4 and 5

1

Show that the time averages of the stored electric and magnetic energies in a reso-
nance cavity are equal.

2

Estimate the number of resonances with a wavelength larger than 500 nm in a cubic
vacuum cavity with volume one cubic meter.

3

a) Determine the fundamental mode in a circular waveguide with radius a with
vacuum inside the waveguide.
b) Plot the transverse electric and magnetic field of the fundamental mode in the
cross section of the waveguide.
c) Determine the surface current density for the fundamental mode.

4

a) Determine the fundamental mode for a rectangular waveguide.
b) Give the x, y-dependence of the different components of the transverse electric
and magnetic fields for the fundamental mode without doing any calculations.
c) Determine the z−component of the Poynting vector S(x, y).
d) Determine the attenuation of the fundamental mode in dB/m when a = 3 cm,
b = 1 cm in the frequency interval [0, fc10] where fc10 is the cut-off frequency for the
fundamental mode.

5

Around 1970 there were attempts to use circular waveguides for communication.
Such a system was developed by Bell Telephone Laboratories in USA that managed
to send 234 000 two-way telephone channels in one waveguide. One then used the
waveguide mode TE01 in a waveguide with radius 25 mm in the frequency band
40-110 GHz. Determine the attenuation in dB/m for the fundamental mode TE11

and for the mode TE01 in a circular waveguide with radius 25 mm as a function of
frequency in the interval [fc, 40 GHz], where fc is the cut-off frequency for the TE11

mode. Explain why they used the mode TE01 and not the fundamental mode. The
waveguide is made out of copper.

6

Determine the three lowest resonance frequencies for a coaxial cable that is termi-
nated by perfectly conducting plates at z = 0 and z = h = 10 cm. The radius of the
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inner and outer conductor is a = 3 mm and b =10 mm, respectively. The material
between the conductors is a plastic material with σ = 0 and ε = 4.

7

Determine the three lowest resonance frequencies for a rectangular parallelepiped
with sides a = 4 cm, b = 3 cm and height h = 5 cm. All of the walls are perfectly
conducting and there is vacuum in the cavity.

8

Design a resonator in the shape of a circular cylinder such that it has the two lowest
resonance frequencies at f1 = 10 GHz and f2 = 15 GHz.

Solutions

S1

Let En be the electric field of a resonance mode in a cavity. Since En satisfies
Maxwell’s equations it follows that

∇× (∇× En) − k2

nEn = 0

Take the scalar product with E∗

n and use

E∗

n·∇×(∇×En) = (∇×E∗

n)·(∇×En)−∇·(E∗

n×(∇×En) =
1

ǫ0ǫ
k2

nBn·H∗

n−∇·(E∗

n×(∇×En))

Thus

1

ǫ0ǫ
k2

nBn · H∗

n −∇ · (E∗

n × (∇× En)) = k2

n|En|2

The volume integral of this relation and the use of Gauss theorem give

k2

n

∫∫∫

V

Bn · H∗

n dV + ǫ0ǫ

∮

S

n̂ · (E∗

n × (∇× En)) dS = k2

nǫ0ǫ

∫∫∫

|En|2 dV

Due to the boundary condition n̂×En = 0 we get n̂ · (E∗

n × (∇×En)) = ∇×En ·
(n̂ × E∗

n) = 0. Since D = ǫ0ǫ we get

1

4

∫∫∫

V

Bn · H∗

n dV =
1

4

∫∫∫

V

En · D∗

n dV

The volume integral to the left is he time average of the magnetic energy in the
cavity and the volume integral to the right is the time average of the electric energy.
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S2

The resonance wavenumbers (TE or TM) are given by k2
nml =

(

2π

λnml

)2

= (n2 +

m2 + l2)
(π

a

)2

where a = 1 m. Now λnml > λ = 500 nm. This means that the n, m, l

have to satisfy

n2 + m2 + l2 ≤
(

2a

λ

)2

= 16 · 1012

Only positive n, m, l are allowed. The total number of combinations n, m, l that
satisfies this relation equals the volume of an eight of a sphere with radius 4 · 106

units. This means that there are
1

8
· 4
3
π(4 ·106)3 resonances. Since there are both TE

and TM modes this should be multiplied by two. The total number is then 6.7 ·1019.

S3

a) For the TE modes Ez(r) = 0 and Hz(r) = w(ρ, φ)eikzz where

wmn(ρ, φ) = AmnJm(ηtmnρ/a) cos mφ

where Amn denotes the normalization constant and where ηmn is the n :th zero of
the derivative J ′

m(kta). The cut-off frequency for the mn-mode is given by

fcmn =
c0ηmn

2πa

The lowest zero is η11 = 1.841 which gives the cut-off frequency

fc11 =
3 · 108 · 1.841

2πa
=

8.79 · 107

a
Hz

where a is in meter.
For the TM-modes Hz(r) = 0 and Ez(r) = v(ρ)eikzz where

vmn(ρ, φ) = BmnJm(ξmnρ/a) cos mφ

where Bmn denotes the normalization constant and ξmn is the nth zero of Jm(kta).
The lowest cut-off frequency is the TM01 mode which has the cut-off frequency

fc =
3 · 108 · 2.405

2πa
=

1.14 · 108

a
Hz

where a is in meter. The fundamental mode is the mode with the lowest cut-off
frequency and in this case it is the TE11 mode.
b) The transverse fields for the TE-modes are given by Eqs. (6.23) and (6.24)

ET = − i

k2
tmn

ω

c0

ẑ ×∇T wmn = − iAmnω

η2
mnc0

(φ̂ηmnJ
′

m(ηmnρ/a) cos mφ + ρ̂
ma

ρ
Jm(ηmnρ/a) sin mφ)

HT = Z−1

mnẑ × ET = Z−1

mn

iAmnω

η2
mnc0

(ρ̂ηmnJ ′

m(ηmnρ/a) cos mφ − φ̂
ma

ρ
Jm(ηmnρ/a) sin mφ)
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where Zmn =
ωµ0

kzmn

is the TE-mode impedance. For the fundamental mode we get

ET = − i

k2
t11

ω

c0

ẑ ×∇T w11 = − iA11ω

η2
11c0

(φ̂η11J
′

1(η11ρ/a) cos φ + ρ̂
a

ρ
J1(η11ρ/a) sin φ)

HT = Z−1

11 ẑ × ET = Z−1

11

iA11ω

η2
11c0

(ρ̂η11J
′

1(η11ρ/a) cos φ − φ̂
a

ρ
J1(η11ρ/a) sin φ)

When these vectors are plotted in Matlab we get the patterns in figure 1.
c) The surface current density is given by the condition

J s = n̂ × H(r) = −ρ̂ × H(a, φ, z) = φ̂Hz(a, φ, z) − ẑHφ(a, φ, z)

This gives

J s(ρ, φ, z) =

(

φ̂A11J1(η11) cosφ − ẑZ−1

11

iA11ω

η11c0

J1(η11) sin φ

)

eikzz

Notice that the φ and z−components are 90◦ out of phase.

Magnetic filed TE-mode, (m,n)=(1,1)
Electric field TE-mode, (m,n)=(1,1)Electric field TE11 Magnetic field TE11

Figure 1: The electric field and the transverse magnetic field for the TE11 mode

S4

a) The fundamental mode is the mode with the lowest cut-off frequency. From the
book we know that this is the TE10-mode. For this mode

Hz(r) =

√

2

ab
cos

πx

a
eikzz

where kz =
√

(ω/c)2 − (π/a)2.

b) We do not have any y−dependence and the x−dependence is either sin
πx

a
or

cos
πx

a
. The boundary conditions are that the tangential components of the electric

field are zero at all walls, that the normal components of H is zero on all walls, and
that the normal derivative of the tangential component of the tangential component
of H is zero on all walls. Then:
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• Ez = 0 since it is a TE-mode. It also follows from that Ez must be zero at all
walls and hence also for all y−values.

• Ex = 0 since it must be zero at y = 0 and y = b and hence for all y

• Ey ∼ sin πx
a

since Ey must be zero at x = 0 and x = a

• Hx ∼ sin πx
a

since Hx is zero at x = 0 and x = a

• Hy = 0 since it must be zero at y = 0 and y = b and hence for all y

c) We now have to calculate the explicit expressions for the transverse electric and
magnetic fields. We use Eqs. (6.23) and (6.24) for this

ET (x, y) = − iω

k2
t10c0

ẑ ×∇T (

√

2

ab
cos

πx

a
) = ŷ

iω

k2
t10c0

π

a

√

2

ab
sin

πx

a
= ŷ

iωa

πc0

√

2

ab
sin

πx

a

HT (x, y) = Z−1

11 ẑ × ET = −x̂Z−1

11

iωa

πc0

√

2

ab
sin

πx

a

since kt10 =
π

a
. Here Z11 =

ωµ0

kz11

is the TE-mode impedance. The z-component of

the complex Poynting vector is

Sz = ẑ · 1

2
ET × H∗

T = (Z∗

11)
−1

1

ab

(

ωa

πc0

sin
πx

a

)2

The time average of the Power flow density is Re{Sz}. This is zero for frequencies
below the cut-off frequency since then kz11 is imaginary but the rest of the factors
are real.

d) For frequencies below the cut-off frequencies then kz10 = i

√

(π

a

)2

− k2 and

eikz10 = e−αz where α =

√

(π

a

)2

− k2. When a = 3 cm the cut-off frequency is

5 GHz. The attenuation is given in figure 3.

S5

The power is attenuated as P (z) = P (0)e−αpz in the waveguide. The attenuation
constant is for TE-modes given by the formula on page 124 in the book. Let a
denote the radius.

αp =
k2

tmn

ωσδµ0kzmn

∮
(

k2
zmn

k4
tmn

|∇T wmn|2 + |wmn|2
)

dl

Here σ = 5.8 ·107 is the conductivity of copper and δ =
√

2/(ωµ0σ is the skin depth.
For the TE01 mode we have

wmn(ρ, φ) = AmnJm(ktmnρ) cos mφ
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Figure 2: The attenuation of the fundamental mode in a rectangular waveguide.
The cut-off frequency is 5 GHz.

Electric field TE10 Transverse magnetic field TE10

Figure 3: The electric field and the transverse component of the magnetic field for
the fundamental mode in a rectangular waveguide.
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where the normalization constant is give by the table on page 112

Amn =

√

ǫm

π(η2
mn − m2)

ηmn

Jm(ηmn)

where ǫm is 1 for m = 0 and 2 otherwise and ηmn = ktmna is the n :th zero of J ′

m.
The gradient of wmn is given by

∇T wmn(ρ, φ) = Amn

(

ρ̂ktmnJ ′

m(ktmnρ) cos mφ − φ̂
m

ρ
Jm(kcρ) sin nφ

)

Since J ′

m(ktmna) = 0 it is seen that

αp =
A2

mnk
2
tmn

ωσδµ0kzmn

2π
∫

0

(

m2k2
zmn

k4
tmna2

sin2 mφ + cos2 mφ

)

(Jm(kca))2 adφ

=
A2

mnk
2
tmn2πa

ǫmωσδµ0kzmn

(

m2k2
zmn

k4
tmna2

+ 1

)

(Jm(ηmn))2

=
2

ωσδµ0kzmna

(

m2k2
zmn + k4

tmna
2

k2
tmna2 − m2

)

When the values for the TE01 and TE11 modes are inserted in this expression figure
5 is obtained. We see that the attenuation of TE01 decreases with frequency and
gives a very small attenuation at high frequencies.
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Figure 4: The attenuation of the TE01 and TE11 modes as a function of frequency
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Electric field TE-mode, (m,n)=(0,1) Magnetic field TE-mode, (m,n)=(0,1)

Figure 5: The electric field and the transverse magnetic field for the TE01

S6

In the coaxial cable the TEM-mode propagates at all frequencies. The z−dependence
is given by

E(ρ, z) = E(ρ)(a+eikz + a−e−ikz)

The boundary conditions says that the electric field is zero at z = 0 and z = h.
Thus

(a+ + a−) = 0

(a+eikh + a−e−ikh) = 0

From this we get a+ = −a− and a+ sin kh = 0 and then kh = ℓπ, ℓ = 1, 2, 3 . . .. The

resonance frequencies are given by fr =
cℓ

2h
=

c0ℓ

2h
√

ε
. That gives the three lowest

resonant frequencies

f1 =
c0

2h
√

ε
= 0.75 GHz

f2 =
2c0

2h
√

ε
= 1.5 GHz

f3 =
3c0

2h
√

ε
= 2.25 GHz

There are also TE and TM waveguide modes in the coaxial cables that will have
resonances. However, their resonances are much higher than 2.25 GHz.

S7

We view the parallelpiped as a waveguide in the z−direction with cross section
0 < x < a, 0 < y < b. The general theory for finite waveguide cavities gives the
resonance frequencies

fmnℓ =
c

2π

√

k2
tmn +

(

ℓπ

h

)2

=
c

2π

√

(mπ

a

)2

+
(nπ

b

)2

+

(

ℓπ

h

)2
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The mnℓ values are
{

m = 1, 2, 3 . . . , n = 1, 2, 3 . . . , ℓ = 0, 1, 2, 3 . . . , TM-modes

m = 0, 1, 2, 3 . . . , n = 0, 1, 2, 3 . . . , (m, n) 6= (0, 0), ℓ = 1, 2, 3 . . . , TE-modes

Only one of mnℓ can be zero. Hence the three lowest resonance frequencies are

fTE101 =
c

2π

√

(π

a

)2

+
(π

h

)2

= 4.80 GHz

fTE011 =
c

2π

√

(π

b

)2

+
(π

h

)2

= 5.83 GHz

fTM110 =
c

2π

√

(π

a

)2

+
(π

b

)2

= 6.25 GHz

S8

We let the waveguide be directed in the z−direction with perfectly conducting plates
at z = 0 and z = h. The radius of the waveguide is a. The general theory for finite
waveguide cavities gives the resonance frequencies

fmnℓ =
c

2π

√

k2
tmn +

(

ℓπ

h

)2

The transverse wavenumbers and the ℓ-values are given by
{

ktmn = ξmn/a, ℓ = 0, 1, 2, 3 . . . TM-modes

ktmn = ηmn/a, ℓ = 1, 2, 3 . . . TM-modes

where ξmn is the n:th zero of the Bessel function Jm(kta) and ηmn is the n:th zero
of the derivative J ′

m(kta) The lowest resonance frequencies depend on the height h
and the radius a. The candidates are

1. TM010 with fc =
cξ01

2πa
=

3 · 108 · 2.405

2πa

2. TM110 with fc =
cξ11

2πa
=

3 · 108 · 3.832

2πa

3. TE111 with fc =
c

2π

√

(η11

a

)2

+
(π

h

)2

=
c

2π

√

(

1.841

a

)2

+
(π

h

)2

4. TE112 with fc =
c

2π

√

(η11

a

)2

+

(

2π

h

)2

=
c

2π

√

(

1.841

a

)2

+

(

2π

h

)2

We have two parameters to determine, namely a and h. There are several options.
One is to have fcTM010 = 10 GHz and fcTE111 = 15 GHz. This gives a = 1.15 cm
and h = 1.16 cm. The next resonance frequency is fcTM110 = 15.93 GHz.


