Microwave theory 2014: Problems for week 4 and 5
1

Show that the time averages of the stored electric and magnetic energies in a reso-
nance cavity are equal.

2

Estimate the number of resonances with a wavelength larger than 500 nm in a cubic
vacuum cavity with volume one cubic meter.

3

a) Determine the fundamental mode in a circular waveguide with radius a with
vacuum inside the waveguide.

b) Plot the transverse electric and magnetic field of the fundamental mode in the
cross section of the waveguide.

¢) Determine the surface current density for the fundamental mode.

4

a) Determine the fundamental mode for a rectangular waveguide.

b) Give the z, y-dependence of the different components of the transverse electric
and magnetic fields for the fundamental mode without doing any calculations.

¢) Determine the z—component of the Poynting vector S(x,y).

d) Determine the attenuation of the fundamental mode in dB/m when a = 3 cm,
b =1 cm in the frequency interval [0, f.10] where f.1o is the cut-off frequency for the
fundamental mode.

5

Around 1970 there were attempts to use circular waveguides for communication.
Such a system was developed by Bell Telephone Laboratories in USA that managed
to send 234 000 two-way telephone channels in one waveguide. One then used the
waveguide mode TEy; in a waveguide with radius 25 mm in the frequency band
40-110 GHz. Determine the attenuation in dB/m for the fundamental mode TEq;
and for the mode TEg; in a circular waveguide with radius 25 mm as a function of
frequency in the interval [f,, 40 GHz|, where f. is the cut-off frequency for the TE;
mode. Explain why they used the mode TE(; and not the fundamental mode. The
waveguide is made out of copper.

6

Determine the three lowest resonance frequencies for a coaxial cable that is termi-
nated by perfectly conducting plates at 2 = 0 and z = h = 10 cm. The radius of the



inner and outer conductor is ¢ = 3 mm and b =10 mm, respectively. The material
between the conductors is a plastic material with ¢ = 0 and ¢ = 4.

7

Determine the three lowest resonance frequencies for a rectangular parallelepiped
with sides a = 4 cm, b = 3 cm and height A = 5 cm. All of the walls are perfectly
conducting and there is vacuum in the cavity.

8

Design a resonator in the shape of a circular cylinder such that it has the two lowest
resonance frequencies at f; = 10 GHz and f, = 15 GHz.

Solutions

S1

Let E, be the electric field of a resonance mode in a cavity. Since FE, satisfies
Maxwell’s equations it follows that

Vx(VxE,)—-kE,=0

Take the scalar product with E and use
1

E''VX(VXE,) = (VXE?)-(VXE,)-V-(E:x(VXE,) = ;kiBn-H’;—V-(E;x(VxEn))
0

Thus

1
— kB, -H: -V (E* x(VxE,))=k|E,]

€€

The volume integral of this relation and the use of Gauss theorem give

ki// Bn-H;deLeoe%ﬁ-(E;x(VxEn))dS:kieoe// |E,|>dV
\% S

Due to the boundary condition n x E,, =0 we get n- (E’ x (VX E,)) =V x E,, -
(n x E;) =0. Since D = ¢ye we get

1// Bn.H;dvzl// E, D, dV
4 |4 4 |4

The volume integral to the left is he time average of the magnetic energy in the
cavity and the volume integral to the right is the time average of the electric energy.



S2

97 \ 2
The resonance wavenumbers (TE or TM) are given by k2 = = ( i ) = (n* +

nml >\nml

2
m2+l2) (E) where a = 1 m. Now \,,,; > A = 500 nm. This means that the n,m, !
a

have to satisfy
24\ 2
n?+m?+ 1% < (;) =16-10"
Only positive n,m,[ are allowed. The total number of combinations n,m,[ that
satisfies this relation equals the volume of an eight of a sphere with radius 4 - 10°

1
units. This means that there are 3 §7r(4- 10°)? resonances. Since there are both TE
and TM modes this should be multiplied by two. The total number is then 6.7-10%.

S3
a) For the TE modes E,(r) = 0 and H,(r) = w(p, ¢)e*** where

Wi (P, @) = Apin I (Memnp/ @) cos me

where A,,, denotes the normalization constant and where 7,,, is the n :th zero of
the derivative J (kia). The cut-off frequency for the mn-mode is given by

CoNmn
2ma

fcmn -

The lowest zero is n;; = 1.841 which gives the cut-off frequency

3-10°-1.841  8.79-107
2ma B a

Z

fcll =

where a is in meter.
For the TM-modes H,(r) = 0 and E,(r) = v(p)e**=* where

Umn(pa ¢) = anJm(ﬁmnﬂ/@) cos me

where B,,, denotes the normalization constant and &,,, is the nth zero of J,,(k.a).
The lowest cut-off frequency is the TMy; mode which has the cut-off frequency

3-10%-2405  1.14-108

Hz
2ma a

fe
where a is in meter. The fundamental mode is the mode with the lowest cut-off
frequency and in this case it is the TE;; mode.
b) The transverse fields for the TE-modes are given by Eqgs. (6.23) and (6.24)

i w, 1AW A . ma .
ET - k’2 —z X vamn ) (¢nmnj;n(77mnp/a) COs m¢ + p—Jm(nmnp/a') S m¢)
tmn €O Nmn €0 P

R 1AW ~Ma )
HT = Zr_nizz X ET = Zmiz 2 . (pnmnjf/n(nmnp/a> COS m(b - ¢7Jm(nmnp/a> Sl m¢>

mn




where Z,,, = ]:} Ho is the TE-mode impedance. For the fundamental mode we get
1w, 1A11w
Er = ——5——2 X Vywy = (1 J{(mip/a) cos ¢ + P Jl(nllp/a) sin )
ki co 171C0
. 1A w
Hp=Z73'2x Er =77 1lc (P Ji(mip/a) cos ¢ — ¢ Ji(mip/a) sin @)
110

When these vectors are plotted in Matlab we get the patterns in figure 1.
¢) The surface current density is given by the condition

Jo=nx H(r)=—px H(a,¢,2) = ¢H.(a,¢,2) — 2Hy(a, ¢, 2)
This gives

1 1A11w

Js(p, ¢, 2) = <$A11J1(7711) cosp — 22y J1(mp1) sin gb) k2

M11Co

Notice that the ¢ and z—components are 90° out of phase.

Electric field TE; Magnetic field TE{;

Figure 1: The electric field and the transverse magnetic field for the TE;; mode

S4

a) The fundamental mode is the mode with the lowest cut-off frequency. From the
book we know that this is the TE p-mode. For this mode

2 )
H.(r) =/ s %elk”

where k, = \/(w/c)? — (7/a)?.

T
b) We do not have any y—dependence and the x—dependence is either sin — or
a

T
cos —. The boundary conditions are that the tangential components of the electric

a
field are zero at all walls, that the normal components of H is zero on all walls, and
that the normal derivative of the tangential component of the tangential component
of H is zero on all walls. Then:



E. = 0 since it is a TE-mode. It also follows from that E, must be zero at all
walls and hence also for all y—values.

E, = 0 since it must be zero at y = 0 and y = b and hence for all y
e L, ~ sin =* since F, must be zero at r =0 and x = a

® H, ~ sin”* since H, is zero at x =0 and x = a

e H, = 0 since it must be zero at y = 0 and y = b and hence for all y

¢) We now have to calculate the explicit expressions for the transverse electric and
magnetic fields. We use Egs. (6.23) and (6.24) for this

o ) iw 5 % Vo 2 7TJJ) Clw w2 . Tx lwa |2 . Tx
T,Yy) = — —C0S— ) =Y-—5——4/—8SIn — = Yy——14/ — sin —
Y k2 0co Vb a ykfloco aV ab a ywco ab a

L o Jlwa |2 . T
wco V ab a

wHo

T
since ky19 = —. Here Z11 = is the TE-mode impedance. The z-component of

a 211
the complex Poynting vector is

1 1 2
S.=%-5Brx Hy = (Z1) 7' — (“’—“ sin @)

The time average of the Power flow density is Re{S,}. This is zero for frequencies
below the cut-off frequency since then k.;; is imaginary but the rest of the factors
are real.

. ) o (T2
d) For frequencies below the cut-off frequencies then k,;o = i (—) — k2 and
a
. 2
eh=10 = 79 where a = (—) — k2. When a = 3 cm the cut-off frequency is
a

5 GHz. The attenuation is given in figure 3.

S5

The power is attenuated as P(z) = P(0)e~*?* in the waveguide. The attenuation
constant is for TE-modes given by the formula on page 124 in the book. Let a
denote the radius.

P wod ok mn ket

tmn

Here o = 5.8-107 is the conductivity of copper and § = 1/2/(wpoo is the skin depth.
For the TEy; mode we have

wmn(p> ¢) - Aanm(ktmnP) COs me
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Figure 2: The attenuation of the fundamental mode in a rectangular waveguide.
The cut-off frequency is 5 GHz.
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Figure 3: The electric field and the transverse component of the magnetic field for
the fundamental mode in a rectangular waveguide.



where the normalization constant is give by the table on page 112

€m ,r]mn
Amn =
(02, — m2) T (M)

where €, is 1 for m = 0 and 2 otherwise and 7, = kmna is the n :th zero of J! .
The gradient of w,,, is given by

VWi, (p, ¢) = Amn <ﬁktmn Jy/n(ktmnp> COS m¢ - (%%Jm(kcp) sin mb)

Since J! (kynna) = 0 it is seen that

21

2 2 27.2
0y = —mnHimn / <m Komn 102 s + cos? md)) (Jun(kca))? adgy

1
W ok zmn ki a?
0

A% K2 2ma ((mPk? 9
EmwWa ok mn ( ki .a2 * ) (S (lmn))
. 2 m2k§mn + k?mna2
— wobok.mna k2 a%—m?

When the values for the TEy; and TE;; modes are inserted in this expression figure
5 is obtained. We see that the attenuation of TE(, decreases with frequency and
gives a very small attenuation at high frequencies.
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Figure 4: The attenuation of the TEy; and TE;; modes as a function of frequency
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Figure 5: The electric field and the transverse magnetic field for the TEq;

S6

In the coaxial cable the TEM-mode propagates at all frequencies. The z—dependence
is given by ' .
E(p,2) = E(p)(a*e™ +a"e™™)

The boundary conditions says that the electric field is zero at z = 0 and z = h.
Thus

(at+a7)=0
(ateith 4 qmeikhy —

From this we get at = —a~ and at sin kh = 0 and then kh = ¢w, { =1,2,3.... The

14 l
resonance frequencies are given by f, = 2C—h = 2;0\/_. That gives the three lowest
€
resonant frequencies
Co
= =0.75GH
f 2hy/e ‘
200
= = 1.5GH
f2 2h\/e §
o= S5 995GH

RPING

There are also TE and TM waveguide modes in the coaxial cables that will have
resonances. However, their resonances are much higher than 2.25 GHz.

ST

We view the parallelpiped as a waveguide in the z—direction with cross section
0 <x<a,0<y<b The general theory for finite waveguide cavities gives the
resonance frequencies

=i () )+ 5+ (5)




The mnf values are

m=1,23...,n=1,23...,0=0,1,2,3..., TM-modes
m=20,1,2,3...,n=0,1,2,3..., (m,n) # (0,0), £=1,2,3..., TE-modes

Only one of mnf can be zero. Hence the three lowest resonance frequencies are

frewn = %\/ (2)2 + (%)2 — 4.80GHz
freon = %\/ (%)2 + (%)2 — 5.83GHz
C

framo = 3 (g)z + (%)2 — 6.25GHz

S8

We let the waveguide be directed in the z—direction with perfectly conducting plates
at z =0 and z = h. The radius of the waveguide is a. The general theory for finite
waveguide cavities gives the resonance frequencies

— 4 k2 4 E_ﬂ- i
271‘ tmn h

&
fmn@ =

The transverse wavenumbers and the (-values are given by

Etmn = Emn/a, €=0,1,2,3... TM-modes
Etmn = Nmn/a, € =1,2,3... TM-modes

where &, is the n:th zero of the Bessel function J,,(kia) and n,,, is the n:th zero
of the derivative J/ (kia) The lowest resonance frequencies depend on the height h
and the radius a. The candidates are

3-10%-2.405
1. TMOlO with .fc = C&)l =

2ma 2ma
3-10%-3.832
2. TM110 with fc = ;f:; = o

. < 71\ 2 ™2 ¢ 1.841\2 T 2
3 T with fC‘%W?) +(3) _%\/< ) ()

Lo e f2m\? e [/1841\?  [2r)?
4. TEq19 with fc = _277‘\/<_a ) + <_h) = —27T\/< . + _h

We have two parameters to determine, namely a and h. There are several options.
One is to have f.ry010 = 10 GHz and f.rg111 = 15 GHz. This gives a = 1.15 cm
and h = 1.16 cm. The next resonance frequency is feorar110 = 15.93 GHz.




