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Microwave theory 2014: Exercises for week 1 and 2

1–11

Problems 3.6–3.16 in the book.

12

We know that a time harmonic wave that propagates in the positive z−direction
along a loss-less transmission line can be expressed in terms of the voltage as

V (z) = Vpe
−jβz

The corresponding current is given by

I(z) = Ipe
−jβz = Z−1

0 Vpe
−jβz

The wave can also be expressed in terms of the electric field as

E(r) = Ep(x, y)e−jβz

The electric field is a plane wave that propagates in the positive z−direction. The
relation between the electric and magnetic field is the usual plane wave relation, i.e.,

H(r) = (η0η)−1ẑ × E(r)

where η0η =
√

µ0

ε0ε
is the wave impedance.

Now consider two coaxial cables that are identical except that they have different
materials between the conductors. The material between the conductors is nonmag-
netic and have permittivity ε1 in cable one and ε2 in cable two. Cable one extends
from z = 0 to z = ℓ and is at z = ℓ connected to cable two, that extends from z = ℓ
to z = 2ℓ. At z = 2ℓ cable two is connected to a matched load. At z = 0 there is a
time harmonic source.
a) Determine the reflection coefficient at z = ℓ using the voltage description of the
line.
b) Determine the reflection coefficient at z = ℓ using the electric field description of
the line.
c) Show that the reflection coefficients are the same.
d) Show that the expressions for the two reflection coefficients are independent of
the geometry of the conductors, as long as the two cables are identical, except for
the material between the cables.

13

Assume that we can either have the source at z = 0 and the matched load at z = 2ℓ
or the source at z = 2ℓ and the matched load at z = 0 in the case above. Find the
scattering matrix S for the cables when ℓ = λ and show that the scattering matrix
is a unitary matrix (StS∗ = U).
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14

The line parameters for a transmission line can often be determined from electro-
and magnetostatics. The electrostatic and magnetostatic energies per unit length
of a transmission line with air (same as vacuum) between the conductors are given
by the surface integrals

We =
ǫ0

2

∫

S

|E(x, y)|2 dS

Wm =
µ0

2

∫

S

|H(x, y)|2 dS

where S is the cross-section surface between the cables and E, H denotes an elec-
trostatic field and magnetostatic fields.
a) Give an expression for the capacitance per unit length for a transmission line.
The expression should contain We and the static voltage V between the cables.
b) Use the expression to determine the capacitance per unit length for a coaxial
cable.
c) Give an expression for the inductance per unit length for a transmission line. The
expression should contain Wm and the current I of the inner conductor.
d) Use the expression to determine the inductance per unit length for a coaxial
cable. Assume that the material is non-magnetic.

15

The time average of the electric and magnetic energies per unit length for a time-
harmonic wave that travels in the positive z−direction along a loss-less transmission
line are

We =
1

4
C|V (z)|2

Wm =
1

4
L|I(z)|2

Show that these two energies are the same.
Do the same by using the electric and magnetic fields.

16

Derive the analytic expressions for R, L, G and C for the parallel plate on page 62.
The medium around the plates is homogeneous with permittivity ε and conductivity
σs. The conductivity of the metal in the plates is σc and the thicknesses of the plates
are much larger than the skin depth.

17

Determine the analytic expressions for R, L, G and C for a microstrip above a
ground plane. The microstrip has width b and the distance to the ground plane
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is a. The material around the microstrip is homogeneous with permittivity ε and
conductivity σs. The conductivity of the metal in the plates is σc and the thicknesses
of the strip and the ground plane are much larger than the skin depth.

18

Sketch the electric and magnetic fields around the two-wire line. Do not make any
explicit calculations.

19

Consider a two-wire line with circular conductors with radius a and with distance c
between the centers of the circles.
a) What limiting values do R, L, G and C get when c → 2a? Try to give some
physical explanation to the limiting values.
b) Assume that there is air (same as vacuum) between the wires. What limiting
value does the characteristic impedance get when c → 2a?
c) Determine c expressed in a such that the characteristic impedance is 50 Ω when
there is air between the wires.

20

Sketch the electric and magnetic fields around the parallel plate. Do not make any
explicit calculations.

21

Assume that a/b → 0 in the parallel plate. What values do R, L, G and C approach?
Try to give some physical explanation.

22

Assume the two cases of two-port matching on page 53. Describe how these matching
can be done by using the Smith charts (both impedance and admittance charts are
needed). The explicit expressions for the impedances should not be used.
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Solutions to problems 12-22

Solution problem 12

For convenience we use z′ = z − ℓ as our z−coordinate. That means that the
interface between the coaxial cables is at z′ = 0.
a) Let the characteristic impedance be Z1 for the coaxial cable to the left and Z2 for
the coaxial cable to the right. The input impedance at z′ = 0 of the coaxial cable
to the right is then Z2. Thus the reflection coefficient is

Γ =
Z2 − Z1

Z2 + Z1

When we insert the expressions for the characteristic impedance for the coaxial cable
we get

Γ =

√
ε1 −

√
ε2√

ε2 +
√

ε1

b) The electric and magnetic fields along the cables are written as

E1 = Epe
−jβ1z′ + Ene

jβ1z′ = Epe
−jβ1z′ + REpe

jβ1z′

H1 = Hpe
−jβ1z′ + Hne

jβ1z′ = (η0η1)
−1(ẑ × Epe

−jβ1z′ − Rẑ × Epe
jβ1z′)

for z′ < 0 and

E2 = TEpe
−jβ2z′

H2 = (η0η2)
−1T ẑ × Epe

−jβ2z′

where we have introduced the transmission coefficient T . The reflection and trans-
mission coefficients are obtained from the boundary conditions at z′ = 0, i.e., that
the electric and magnetic fields are continuous. We then get

1 + R = T

(η0η1)
−1(1 − R) = (η0η2)

−1T

This gives

R =
η2 − η1

η2 + η1

=

√
ε1 −

√
ε2√

ε1 +
√

ε2

T =
2η2

η2 + η1

=
2
√

ε1√
ε1 +

√
ε2

c) It is clear that the reflection and transmission coefficients for the electromagnetic
fields are valid for all types of transmission lines. To show that this is the case when
voltages and currents are used we write the reflection coefficient as

Γ =

√

C1

C2

−
√

L1

L2

√

C1

C2

+
√

L1

L2

(0.1)
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From the derivation of the line parameters we see that when the two lines are
identical except for the permittivity then C1/C2 = ε1/ε2 and L1 = L2. Thus

Γ =

√
ε1 −

√
ε2√

ε1 +
√

ε2

An alternative is to multiply the nominator and denominator of Eq. (0.1) with
√

L1

L2

and use vp =
1√
LC

=
1√

ǫ0ǫµ0

Γ =

√

L1C1

L2C2

− L1

L2
√

L1C1

L2C2

+
L1

L2

=

vp2

vp1

− L1

L2

vp2

vp1

+
L1

L2

=

√
ε1 −

√
ε2√

ε1 +
√

ε2

Solution problem 13

Since the characteristic impedances of the two lines are not equal the scattering
matrix is given by Eq. (4.39) in the book. Thus

(

V −

1

V −

2

)

=









S11

√

Z1

Z2

S12

√

Z2

Z1

S21 S22









(

V +
1

V +
2

)

where Z2/Z1 =
√

ǫ1/ǫ2. It is clear that S11 is the reflection coefficient from an

incident wave from the left,

√

Z2

Z1

S21 is the transmission coefficient from left to

right, S22 is the reflection coefficient for a wave that is incident from right, and
√

Z1

Z2

S12 is the transmission coefficient from the right to left. Since the transmission

lines are one wavelength long the reflection and transmission coefficient are the same
as at z′ = 0. Then we get

S11 =

√
ε1 −

√
ε2√

ε1 +
√

ε2

S21 =

√

Z1

Z2

2
√

ε1√
ε1 +

√
ε2

=
2(ε1ε2)

1/4

√
ε1 +

√
ε2

S22 = −S11

S12 = S21

Note: The unitary condition [S]t[S]∗ = U is still satisfied in this case.
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Solution problem 14

a) The electrostatic energy in a capacitor C with DC voltage V is
1

2
C|V |2. Thus

1

2
C|V |2 = We

and

C =
2We

|V |2
b) To get the electric field in the coaxial cable we let the inner conductor have
potential V and the outer conductor have potential 0. Due to axial symmetry the
electrostatic potential Φ is only dependent on the radial coordinate rc. In cylindrical
coordinates we get

∇2Φ(rc) =
1

rc

∂

∂rc

rc
∂Φ(rc)

∂rc

with boundary conditions Φ(a) = V and Φ(b) = 0. By integrating two times and
by using the boundary conditions we get the solution

Φ(rc) = V
ln(rc/b)

ln(a/b)

the electric field is

E(rc) = −∇Φ(rc) = −∂Φ(rc)

∂rc
= − V

rc ln(a/b)
=

V

rc ln(b/a)

The energy per unit length along the coaxial cable is

We =
ǫ0

2

∫

S

|E(rc)|2 dS =
1

2
ǫ0

(

V

ln(b/a)

)2

2π

∫ b

a

1

r2
c

rc drc = ǫ0

V 2π

ln(b/a)

The capacitance per unit length becomes

C =
2We

V 2
= ε0

2π

ln(b/a)

c) The magnetic energy in an inductor with current I is
1

2
LI2. Thus

L =
2Wm

I2

d) Due to the axial symmetry the magnetic field between the conductors is given by

Amperes law as H =
I

2πrc

φ̂. Since the material is non-magnetic we get

Wm =
µ0

2
2π

b
∫

a

I2

4π2r2
c

rc drc =
µ0

4π
I2 ln

(

b

a

)

The inductance per unit length is given by

L =
µ0

2π
ln

(

b

a

)



7

Solution problem 15

Since
V (z)

I(z)
=

V +(z)

I+(z)
= Z0 =

√

L

C
for a wave traveling in the positive z−direction

we get

We =
1

4
C|V (z)|2 =

1

4
C

L

C
|I(z)|2 = Wm

We use the plane wave relation E = η0ηH × ẑ, where η0η =
√

µ0/ǫ0ǫ is the wave
impedance, to get

We =
ǫǫ0

4

∫

S

E · E∗ dS =
ǫ0ǫ

4

µ0

ǫ0ǫ

∫

S

H · H∗ dS = Wm

Solution problem 16

The capacitance for a plate capacitor with plate area A and distance a between the
plates is

C =
ε0εA

a

Thus the capacitance per unit length for a parallel plate line with width b and
distance a between the plates is

C =
ε0εb

a

We now use the relations

L =
1

v2
pC

=
µ0a

b

G =
σs

ε0ε
C =

σsb

a

For the resistance we utilize the surface resistance is Rs. The surface current is only
floating in the upper surface of the lower plate and on the lower surface of the upper
plate. Each surface can be viewed as parallel coupled resistors with width dx and
resistance per unit length Rs/dx. The resistance per unit length of each conductor
is then given by

1

Rc

=

∫ b

0

1

Rs

dx =
b

Rs

and then the total resistance is

R = 2Rc =
2Rs

b

where Rs =

√

ωµ0

2σc
. An alternative is to use the relation P =

1

2
Rs|Js|2 =dissipated

power per unit area. The current density is constant on the upper surface of the
lower plate and on the lower surface of the upper plate, but zero everywhere else.



8

Thus it equals J s = I/bẑ on the upper plate. The dissipated power per unit length
is then

1

2
R|I|2 = 2bP = Rs

|I|2
b

and hence

R =
2Rs

b

Solution problem 17

The analysis is exactly the same as for the parallel plate transmission line and the
parameters are also the same.

Solution problem 18

The magnetic field lines are given in figure 4.16 in the book. The electric field lines
are everywhere perpendicular to the magnetic field lines. They start at the surface
of one conductor and end at the surface of the other.

Solution problem 19

a) When c → 2a we see from the analytical expressions for the two-wire that R → ∞,
L → 0, C → ∞ and G → ∞. R goes to infinity since the surface current density
is confined to the spot where the two cylinders almost touch. We can use the plate
capacitor formula to understand that the capacitance goes to infinity. The distance
between the conductors goes to zero but the surface is finite and hence the capaci-
tance goes to infinity. The conductance goes to infinity since the resistance between
the conductors goes to zero. It is harder to see why the inductance is zero. The
surface current density will be finite even when the distance between the circles goes
to zero. One way to see this is to magnify the region where the wires are closest to
each other. This region will look like two parallell planes very close to each other.
Hence the surface current density is finite. Thus the magnetic flow density is finite
everywhere and the magnetic flow goes to zero.

b) Z0 → 0

c) c = a
e10/12 − 1

e5/12
= 2.176a

Solution problem 20

The magnetic field lines are given in figure 4.18 in the book. The electric field lines
are everywhere perpendicular to the magnetic field lines. They start at the surface
of one conductor and end at the surface of the other. Most of the field lines start
from the upper surface of the lower conductor and goes straight up to the lower
surface of the upper conductor.
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Solution problem 21

From the formulas on page 62 we see that R is still finite with the value 2Rs/b,
L → 0, C → ∞ and G → ∞. The magnetic field between the plates is given by the
surface current density I/b (H = I/bx̂ between the plates due to Amperes law).
Thus the magnetic flow between the plates is µ0aI/b and hence L goes to zero.
C goes to infinity according to the parallel plate capacitor formula and G goes to
infinity since the resistance between the plates goes to zero.

Solution problem 22

0
x=0

r=0

x=0.5

r=0.5

r=0.4

x=-0.5

x=-0.2

x=2

r=2

x=-2

r=1

x=1

x=-1

B

D

C

A

The Smith chart: Assume that we like to match a load ZL to a transmission line
with characteristic impedance Z0. First we introduce the normalized impedance
zL = ZL/Z0. The trick is to go from normalized impedance zL to normalized
impedance 1. The rules are that we are only aloud to move along curves with con-
stant resistance or constant conductance. As an example consider a load impedance
ZL = 2Z0 + jZ0. Then zL = 2 + j. This is point A in the Smith chart. It is useless
to add reactance. Instead we go to the admittance yL = YL/Y0 = Z0/ZL = 1/zL at
point B. We find this point in the Smith chart by drawing a line from zl through
z = 1 and let the length between zL and z = 1 be the same as between z = y = 1 and
yL. From yL we add a susceptance b = −0.3 and reach C. Then we are at a point y
for which the impedance z is on the circle that goes through z = y = 1. We go back
to z (point D) and add a reactance x = −1.27 and end up at z = 1. The load is now
matched to the line. We first added a susceptance B = bY0 ≈ −0.3/50 = −0.006
A/V parallel to ZL. We then added a reactance X = xZ0 ≈ −1.27 · 50 = −63.5
V/A in series with the parallel coupled impedances.
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If we start with an impedance with RL < Z0 then we have to add a reactance first and
then a susceptance. As an example we start with the impedance ZL = 0.5Z0 + jZ0.
Then zL = 0.5 + j. We find this impedance in the Smith chart. We add xL = −0.5
which gives z = 0.5 + j0.5. From there we switch to admittance yl = 1 − j. We
add a susceptance b = 1 to get to y = z = 1 and the goal is reached. Thus we
have first put a reactance X = −0.5 · 50 = −25 V/A in series with ZL and then
put a susceptance B = j1/50 = j0.02 A/V in parallel with the two series coupled
impedances. We can compare with the formulas on page 7. When ZL = 2Z0 + jZ0

we should first put a susceptance B

B = ±
√

GL(1 − Z0GL)

Z0

− BL

in parallel with ZL and then a reactance

X = ±Z0

√

1 − Z0GL

Z0GL

in series. The values are B = −0.0058 A/V (- sign used) and X = −61.2 V/A. A
more careful analysis in the Smith chart gives the same values as the formulas.
When ZL = 0.5Z0 + jZ0 we should first put a reactance

X = ±
√

RL(Z0 − RL) − XL

in series and then

B = ±
√

(Z0 − RL)/RL

Z0

in parallel. The values are X = −25 V/A (+ sign used) and B = 0.02 A/V. Which
is exactly what we got from the Smith chart.


