

Microwave theory, March 17, 2014

Anders Karlsson, anders.karlsson@eit.lth.se

Electrical and information technology

Homepage

All information is on the course home page http://www.eit.lth.se/

Examination

- ► Hand in problems. Three assignments.
- Project.
- Oral exam for grades 4 and 5.

Assignments

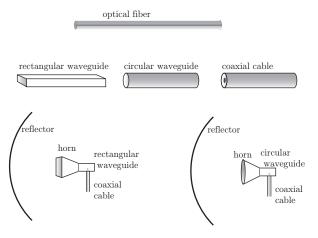
The assignments should be solved individually. You are allowed to

- discuss the problem with others
- ask the teacher (Anders) if you get stuck

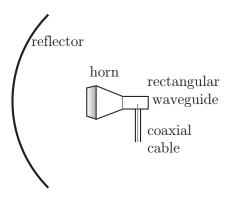
You are not allowed to copy solutions!

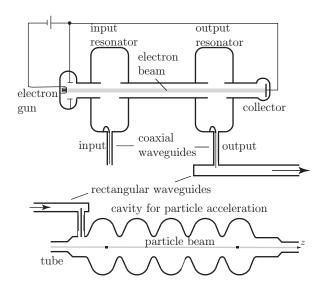
Project

- Groups of two students (or, if needed three or one).
- All students have to contribute to the project.
- All students have to take part in the oral presentation of the project.
- ▶ Discussions with the teacher (Anders) are recommended.
- ▶ You are not allowed to copy results from other groups.


COMSOL Multiphysics 4.4

- ► Finite element method program
- Installed on most of the computers in the basement of the E-building
- ▶ Install it from LDC. See information on homepage
- ▶ Introduction to COMSOL Tuesday 25/3 in E:Uranus


Microwave theory


- Maxwell equations
- Transmission lines
- Waveguides
- Resonance cavities
- Dielectric waveguides
 - Optical fibers
 - ► Dielectric resonators

Example

Example

The Maxwell equations

Time domain!

$$abla imes oldsymbol{E}(oldsymbol{r},t) = -rac{\partial oldsymbol{B}(oldsymbol{r},t)}{\partial t}
onumber \
abla imes oldsymbol{H}(oldsymbol{r},t) = oldsymbol{J}(oldsymbol{r},t) + rac{\partial oldsymbol{D}(oldsymbol{r},t)}{\partial t}
onumber$$

E=electric field

D=electric flux density

 $H{=}\mathsf{magnetic}$ field

B = magnetic flux density

 $J{=}\mathsf{current}$ density

The Maxwell equations

What else is needed in order to find \boldsymbol{E} and \boldsymbol{H} in a typical problem?

- Sources
- lacktriangle Constitutive relations: $D=\epsilon_0\epsilon E$, $B=\mu_0\mu H$, $J=\sigma E$
- Boundary conditions

The Maxwell equations

Frequency domain!

$$egin{aligned}
abla imes m{E}(m{r}) &= -\mathrm{j}\omega m{B}(m{r}) \
abla imes m{H}(m{r}) &= m{J}(m{r}) + \mathrm{j}\omega m{D}(m{r}) \end{aligned}$$

Phasors: examples

Transformation between time and frequency domain:

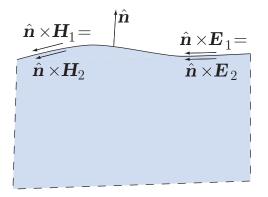
$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0(\mathbf{r})\cos(\omega t + \phi) \longleftrightarrow \mathbf{E}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r})e^{\mathrm{j}\phi}$$
$$v(t) = V_0\cos(\omega t + \pi/4) \longleftrightarrow V = V_0e^{\mathrm{j}\pi/4}$$
$$\frac{\partial}{\partial t} \longleftrightarrow \mathrm{j}\omega$$

 $oldsymbol{E}(oldsymbol{r}) = \!\!\! \mathsf{complex}$ electric field $V = \!\!\! \mathsf{complex}$ voltage

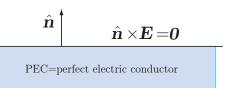
Helmholz equation

Maxwell equations in the frequency domain lead to

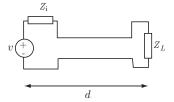
$$\nabla^2 \mathbf{E}(\mathbf{r}) + k^2 \mathbf{E}(\mathbf{r}) = \mathbf{0}$$
$$\nabla^2 \mathbf{H}(\mathbf{r}) + k^2 \mathbf{H}(\mathbf{r}) = \mathbf{0}$$


 $k=\omega\sqrt{\mu_0\mu\epsilon_0\epsilon}=rac{\omega}{c}$ =wave number in the material. Helmholtz equations for m E and m H are vital for waveguides and

Helmholtz equations for E and H are vital for waveguides and cavities!


Boundary conditions

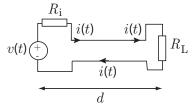
Boundary between two materials Tangential component of \boldsymbol{E} is the same on both sides! Tangential component of \boldsymbol{H} is the same on both sides!


Boundary conditions

Boundary to a perfect conductor Tangential component of \boldsymbol{E} is zero!

Circuits

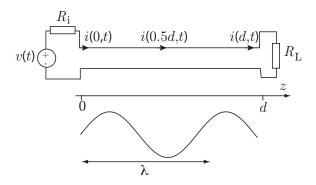
Discrete circuits!



 $d \ll \lambda \Rightarrow$ discrete circuit \Rightarrow Circuit theory.

Circuits

Discrete circuits!

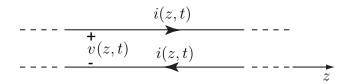

 $d \ll \lambda \Rightarrow$ discrete circuit \Rightarrow Circuit theory.

Discrete circuits?

- ▶ Analogue telephone line? $d \approx 1$ km, $f_{\rm max} \sim 6$ kHz, $\lambda = 50$ km $\Rightarrow d \ll \lambda$ Yes!
- ▶ Telephone line with ADSL? $d \approx 1$ km, $f_{\rm max} \sim 1$ MHz, $\lambda = 300$ m $\Rightarrow d > \lambda$ No!

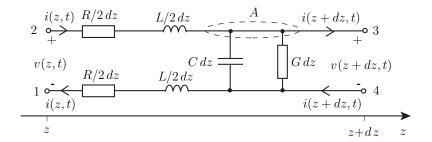
Circuits

 $d > 0.1\lambda \Rightarrow$ Transmission line.


Transmission lines

- Coaxial cables
- ► Parallel wires (e.g. twisted pairs for LAN)
- Micro strips in integrated circuits and on PCB.

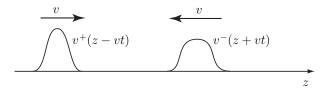
. . . .


Transmission lines

- ▶ Voltage v(z,t) and current i(z,t). Waves!
- ▶ Distributed line parameters (R, L, G, C)

Transmission line parameters

R=resistance per unit length


L = inductance per unit length

G=conductance per unit length

C =capacitance per unit length

Waves along transmission line

The voltage and current are superpositions of waves traveling to the left and to the right! They travel with the speed of light.

