

EITN90 Radar and Remote Sensing Lecture 10: Fundamentals of pulse compression waveforms

Daniel Sjöberg

Department of Electrical and Information Technology

Learning outcomes of this lecture

In this lecture we will

- Introduce matched filters
- See how pulse compression can improve range resolution
- Study the linear frequency modulated waveform
- See how the ambiguity function can be used to analyze waveforms

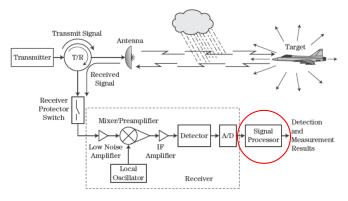
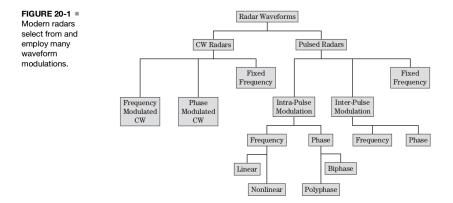


FIGURE 1-1 = Major elements of the radar transmission/ reception process.

Outline


- Matched filters
- 2 Range resolution
- 6 Linear frequency modulated waveforms
- **4** Matched filter implementations
- 5 Sidelobe reduction in an LFM waveform
- **6** Ambiguity functions
- Phase-coded waveforms
- **8** Conclusions

Outline

Matched filters

- 2 Range resolution
- Einear frequency modulated waveforms
- **4** Matched filter implementations
- **5** Sidelobe reduction in an LFM waveform
- **6** Ambiguity functions
- Phase-coded waveforms
- **8** Conclusions

Radar waveforms

Many different waveforms are used in radars, taking many system requirements and constraints into account: bandwidth, power, Doppler tolerance, sidelobes, range resolution etc.

General time-invariant filtering

After filtering the received signal $x_{\rm r}(t)$ through any linear, time-invariant filter $h(\cdot)$ the signal is

$$y(t) = \int_{-\infty}^{\infty} h(t - \alpha) x_{\mathbf{r}}(\alpha) \,\mathrm{d}\alpha$$

With a time delayed received signal $x_{
m r}(t)=x(t-t_{
m d})$ we have

$$y(t) = \int_{-\infty}^{\infty} h(t - \alpha) x(\alpha - t_{\rm d}) \,\mathrm{d}\alpha$$

The amplitude $\left|y(t)\right|$ can be estimated using the Schwartz inequality

$$\begin{split} |y(t)| &\leq \left(\int_{-\infty}^{\infty} |h(t-\alpha)|^2 \,\mathrm{d}\alpha\right)^{1/2} \cdot \left(\int_{-\infty}^{\infty} |x(\alpha-t_{\mathrm{d}})|^2 \,\mathrm{d}\alpha\right)^{1/2} \\ &= (\mathrm{energy \ of \ filter})^{1/2} \cdot (\mathrm{energy \ of \ signal})^{1/2} \end{split}$$

where the values of t or t_d do not matter in the last expression.

Matched filter

With knowledge of the transmitted signal $\boldsymbol{x}(t),$ we can choose the matched filter

 $h(t) = x^*(-t)$

With this particular choice, we have the output

$$y(t) = \int_{-\infty}^{\infty} h(t-\alpha)x(\alpha-t_{\rm d})\,\mathrm{d}\alpha = \int_{-\infty}^{\infty} x^*(\alpha-t)x(\alpha-t_{\rm d})\,\mathrm{d}\alpha$$

This is maximized at $t = t_d$ (demonstrating the optimality of the matched filter since the maximum is attained)

$$\max_{t} |y(t)| = y(t_{\mathrm{d}}) = \int_{-\infty}^{\infty} |x(\alpha - t_{\mathrm{d}})|^2 \,\mathrm{d}\alpha = \int_{-\infty}^{\infty} |x(\alpha)|^2 \,\mathrm{d}\alpha$$

which is proportional to the energy of the pulse waveform x(t).

Matched filter as maximizing SNR

Convolution in time domain corresponds to multiplication in frequency domain, or

$$\begin{split} Y(\omega) &= H(\omega) X_{\rm r}(\omega) = H(\omega) X(\omega) {\rm e}^{-{\rm j}\omega t_{\rm d}} \\ \Rightarrow \quad y(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega) X(\omega) {\rm e}^{{\rm j}\omega(t-t_{\rm d})} \, {\rm d}\omega \end{split}$$

With white noise $N(\omega)=N_0,$ the total received noise power is

$$\overline{n^2(t)} = \frac{N_0}{2\pi} \int_{-\infty}^{\infty} |H(\omega)|^2 \,\mathrm{d}\omega$$

Hence the SNR at $t = t_{\rm d}$ is

$$SNR = \frac{|y(t_d)|}{\overline{n^2(t)}} = \frac{\left|\int_{-\infty}^{\infty} H(\omega)X(\omega) \,\mathrm{d}\omega\right|}{N_0 \int_{-\infty}^{\infty} |H(\omega)|^2 \,\mathrm{d}\omega}$$

which is maximized for $H(\omega) = X^*(\omega)$ or $h(t) = x^*(-t)$.

Example: rectangular pulse

For the simple rectangular pulse (setting $t_{\rm d}=0$)

$$x(t) = A, \quad -\frac{\tau}{2} \le t \le \frac{\tau}{2}$$

the matched filter is

$$h(t) = A, \quad -\frac{\tau}{2} \le t \le \frac{\tau}{2}$$

and the filtered response is

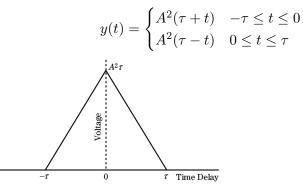
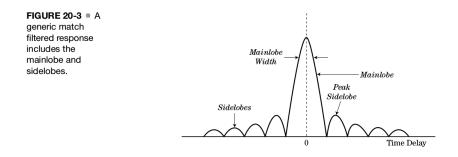



FIGURE 20-2 The simple pulse of duration τ has a match filtered response of duration 2τ .

Generic response

For general waveforms, the filtered response is typically described in terms of mainlobe and sidelobes.

Outline

Matched filters

2 Range resolution

- Iinear frequency modulated waveforms
- **4** Matched filter implementations
- **5** Sidelobe reduction in an LFM waveform
- **6** Ambiguity functions
- Phase-coded waveforms
- **8** Conclusions

Resolution

The Rayleigh resolution criterion is that the peak of one target is at the null of the second target.

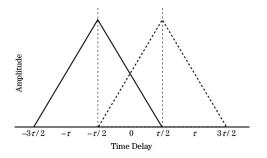


FIGURE 20-4 ■ Individual responses from two point targets separated by the Rayleigh resolution.

The above figure corresponds to the matched filter response of rectangular pulses.

Fourier uncertainty principle

The widths of a signal of zero mean in time and frequency domain can be defined by

$$D_t = \sqrt{\frac{\int_{-\infty}^{\infty} t^2 |y(t)|^2 \, \mathrm{d}t}{\int_{-\infty}^{\infty} |y(t)|^2 \, \mathrm{d}t}}$$
$$D_\omega = \sqrt{\frac{\int_{-\infty}^{\infty} \omega^2 |Y(\omega)|^2 \, \mathrm{d}\omega}{\int_{-\infty}^{\infty} |Y(\omega)|^2 \, \mathrm{d}\omega}}$$

The product of these widths is bounded below as

$$D_t D_\omega \ge \sqrt{\frac{\pi}{2}}$$

with equality for Gaussian signals. This motivates that resolution in time (range) is inversely proportional to frequency bandwidth.

$$\delta R = \kappa \frac{c}{2B}$$

 $\kappa\approx 1,$ definitions of resolution and bandwidth often chosen to conform with this formula.

Phase difference between two targets

Two targets separated by the Rayleigh resolution can present radically different responses depending on phase difference.

FIGURE 20-5 ■ Combined response for two point targets with phase difference equal to 0°.

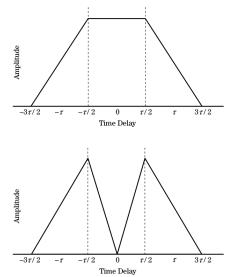


FIGURE 20-6 Combined response for two point targets with phase difference equal to 180°.

Outline

1 Matched filters

2 Range resolution

6 Linear frequency modulated waveforms

- **4** Matched filter implementations
- **5** Sidelobe reduction in an LFM waveform
- **6** Ambiguity functions
- Phase-coded waveforms
- **8** Conclusions

LFM waveform

A baseband linear frequency modulated waveform (LFM) is

$$x(t) = A \cos\left[\pi \tau B\left(\frac{t}{\tau}\right)^2\right], \quad -\frac{\tau}{2} \le t \le \frac{\tau}{2}$$

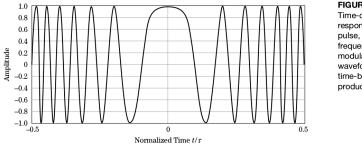
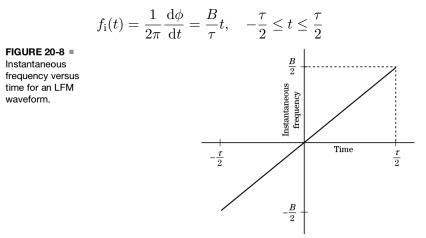



FIGURE 20-7 ■ Time-domain response, within the pulse, of a linear frequency modulated (LFM) waveform with a time-bandwidth product equal to 50.

The waveform is characterized by the time-bandwidth product τB and normalized time $t/\tau.$

Instantaneous frequency

The instantaneous phase is $\phi(t)=\pi\tau B(t/\tau)^2$, and instantaneous frequency is

The linear change motivates the term linear frequency modulation.

The LFM spectrum has a relatively flat spectrum across bandwidth B. Flatness and roll-off improves as time-bandwidth product τB increases.

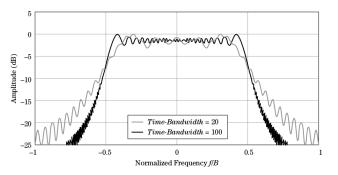
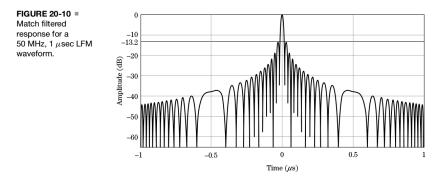



FIGURE 20-9 Comparison of the spectra of LFM waveforms with time-bandwidth products of 20 (light curve) and 100 (dark curve).

Matched filter response

The matched filter response for the LFM waveform is

$$y(t) = \int_{-\infty}^{\infty} x^*(\alpha - t) x(\alpha) \, \mathrm{d}\alpha = \left(1 - \frac{|t|}{\tau}\right) \frac{\sin\left[\left(1 - \frac{|t|}{\tau}\right) \pi \tau B \frac{t}{\tau}\right]}{\left(1 - \frac{|t|}{\tau}\right) \pi \tau B \frac{t}{\tau}}, \quad |t| \le \tau$$

The peak is much more narrow than total pulse width τ !

Range resolution

For large values of τB , the first null occurs at $t \approx 1/B$. With range R = ct/2, the Rayleigh resolution in range is

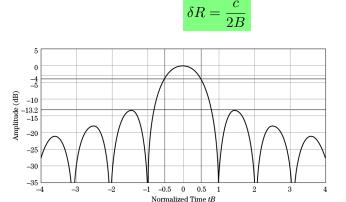


FIGURE 20-11 Mainlobe and first 3 sidelobes for the LFM waveform match filtered response with a time-bandwidth product equal to 100.

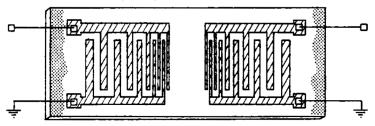
Peak compressed by a factor of $\frac{\tau}{1/B} = \tau B$.

Outline

- 1 Matched filters
- **2** Range resolution
- Iinear frequency modulated waveforms

4 Matched filter implementations

- **5** Sidelobe reduction in an LFM waveform
- **6** Ambiguity functions
- Phase-coded waveforms

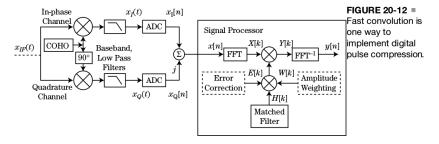

8 Conclusions

Dispersive filters

Filters having frequency dependent group delay

$$t_{\rm gd} = -\frac{\mathrm{d}\phi(\omega)}{\mathrm{d}\omega} = \frac{\tau}{2\pi B}\omega$$

can both stretch and compress waveforms. One implementation is surface acoustic wave (SAW) technology:



The device couples electromagnetic energy to acoustic waves, where the coupling is strongest when the distance between the metal fingers correspond to $\lambda/2$ for the acoustic wave. Chirping is obtained by different acoustic propagation lengths. Works up to about 3 GHz, high insertion loss.

Digital filters

With a digitized signal, the matched signal can be implemented using the Fast Fourier Transform (FFT) of the analytic signal $x[n] = x_{\rm I}[n] + jx_{\rm Q}[n]$:

 $y[n] = \operatorname{FFT}^{-1}\{H[\cdot] X[\cdot]\}[n], \quad X[k] = \operatorname{FFT}\{x[\cdot]\}$

Error correction is obtained by transmitting a pilot pulse and recording the received (distorted) signal, taking into consideration imperfections in the transmit/receive chain.

Outline

- 1 Matched filters
- **2** Range resolution
- Iinear frequency modulated waveforms
- **4** Matched filter implementations
- **(5)** Sidelobe reduction in an LFM waveform
- **6** Ambiguity functions
- Phase-coded waveforms
- **8** Conclusions

Sidelobe reduction

Sidelobes of the compressed pulse can be reduced by weighting the filter in amplitude. The cost is an increased mainlobe width.

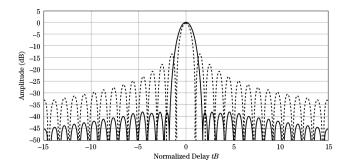


FIGURE 20-13 ■ A -40 dB, $\bar{n} = 4$, Taylor-weighted LFM waveform compressed response (solid curve) has significantly reduced sidelobes versus an unweighted LFM waveform response (dashed curve). When increasing the sidelobe suppression, the resolution is decreased.

TABLE 20-2 4 dB Resolution Associated with a Taylor Weighting Function

	Peak Sidelobe Ratio (dB)								
	-20	-25	-30	-35	-40	-45	-50	-55	-60
\overline{n}	4 dB Resolution Normalized by $c/2B$								
2	1.15	1.19	1.21						
3	1.14	1.22	1.28	1.33					
4	1.12	1.22	1.29	1.36	1.42	1.46			
5	1.11	1.20	1.29	1.36	1.43	1.49	1.54		
6	1.10	1.19	1.28	1.36	1.43	1.50	1.56	1.61	
7	1.09	1.19	1.28	1.36	1.43	1.50	1.56	1.62	1.67
8	1.08	1.18	1.27	1.35	1.43	1.50	1.57	1.63	1.68

The theoretical sidelobe reduction is achieved when the weighting is applied to a rectangular spectrum. A real LFM has some additional spread, which is reduced as $\tau B \rightarrow \infty$.

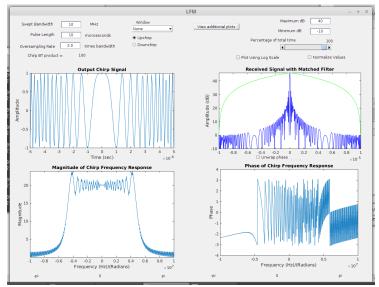



FIGURE 20-14 ■ A comparison of time-sidelobe responses for time-bandwidth products of 20 (solid curve) and 100 (dashed curve) when applying a -40 dB Taylor weighting.

Matlab demo, http://radarsp.com

FRSP Demos/FRSP GUI Demos/FRSP LFM-GUI

Outline

- 1 Matched filters
- 2 Range resolution
- Iinear frequency modulated waveforms
- **4** Matched filter implementations
- **5** Sidelobe reduction in an LFM waveform

6 Ambiguity functions

Phase-coded waveforms

B Conclusions

Ambiguity function

Taking into account the possibility of both time delay and Doppler shift, the received signal is

$$x_{\rm r}(t) = \mathrm{e}^{\mathrm{j}2\pi f_{\rm d}t} x(t - t_{\rm d})$$

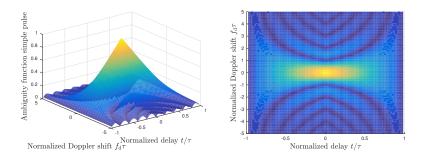
Centering the waveform over $t_{\rm d}=0$ and applying the matched filter and normalizing x with its energy, we find the ambiguity function

$$A(t, f_{\rm d}) = \frac{\int_{-\infty}^{\infty} x(\alpha) \mathrm{e}^{\mathrm{j}2\pi f_{\rm d}\alpha} x^*(\alpha - t) \,\mathrm{d}\alpha}{\int_{-\infty}^{\infty} |x(\alpha)|^2 \,\mathrm{d}\alpha}$$

This satisfies

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |A(t,f_{\mathrm{d}})|^2 \,\mathrm{d}t \,\mathrm{d}f_{\mathrm{d}} = 1 \quad \text{and} \quad |A(t,f_{\mathrm{d}})| \leq |A(0,0)| = 1$$

Ambiguity for a simple rectangular pulse


For an unmodulated pulse,

$$x(t) = \frac{1}{\sqrt{\tau}}, \quad -\frac{\tau}{2} \le t \le \frac{\tau}{2}$$

the ambiguity function can be calculated as

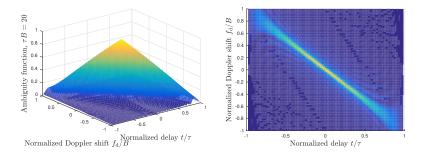
$$A(t, f_{\rm d}) = \left(1 - \frac{|t|}{\tau}\right) \frac{\sin\left[\pi f_{\rm d}\tau \left(1 - \frac{|t|}{\tau}\right)\right]}{\pi f_{\rm d}\tau \left(1 - \frac{|t|}{\tau}\right)}, \quad |t| \le \tau$$

Depends on normalized time t/τ and normalized Doppler shift $f_{\rm d}\tau$.

Similar to Fig 20-15 in the book. Using a matlab script, you can plot the figure in 3D and rotate.

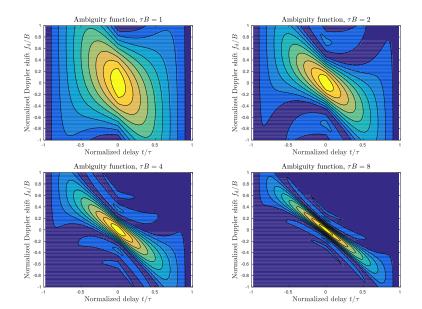
Ambiguity function for LFM waveform

For a linear frequency modulated pulse


$$x(t) = \frac{1}{\sqrt{\tau}} \exp\left(\mathrm{j}\pi \frac{B}{\tau}t^2\right), \quad |t| \le \tau$$

the ambiguity function can be calculated as

$$A(t, f_{\rm d}) = \left| \left(1 - \frac{|t|}{\tau} \right) \frac{\sin \left[\pi \tau B \left(1 - \frac{|t|}{\tau} \right) \left(\frac{f_{\rm d}}{B} + \frac{t}{\tau} \right) \right]}{\pi \tau B \left(1 - \frac{|t|}{\tau} \right) \left(\frac{f_{\rm d}}{B} + \frac{t}{\tau} \right)} \right|, \quad |t| \le \tau$$

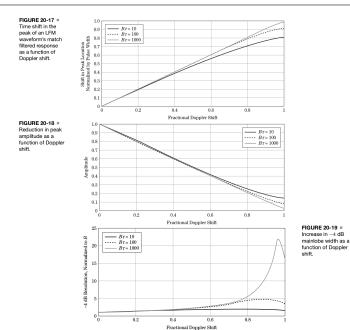

Depends on normalized time delay t/τ and normalized Doppler shift $f_{\rm d}/B$, with time-bandwidth parameter τB .

Ambiguity function for LFM waveform, $\tau B = 20$

Similar to Fig 20-16. Can also be plotted with the matlab script in 3D and rotated.

Ambiguity function for LFM waveform, different τB

From the formula


$$A(t, f_{\rm d}) = \left| \left(1 - \frac{|t|}{\tau} \right) \frac{\sin \left[\pi \tau B \left(1 - \frac{|t|}{\tau} \right) \left(\frac{f_{\rm d}}{B} + \frac{t}{\tau} \right) \right]}{\pi \tau B \left(1 - \frac{|t|}{\tau} \right) \left(\frac{f_{\rm d}}{B} + \frac{t}{\tau} \right)} \right|, \quad |t| \le \tau$$

we see that a non-zero Doppler shift can be interpreted as

- Time shift $-f_{\rm d}\tau/B$
- Amplitude reduction by $(1 |t|/\tau)$

This leads to shifts in peak location, peak amplitude, and decreased resolution due to peak widening.

Degradations in presence of Doppler shift

Matched filter response in presence of Doppler shift

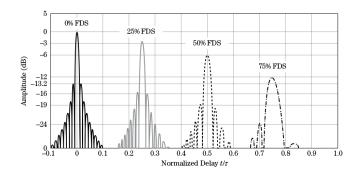
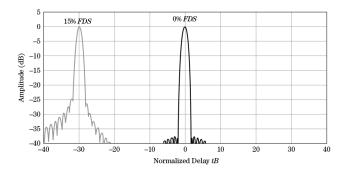
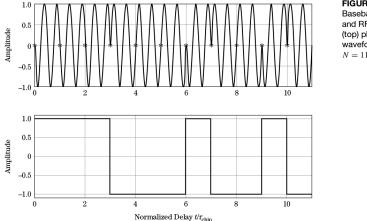



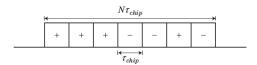
FIGURE 20-20 = Individual LFM match filtered responses for fractional Doppler shifts of 0%, 25%, 50%, and 75% illustrate both reduction in peak levels and broadening of the mainlobe. The effect of applying an amplitude taper to control sidelobes is reduced in presence of Doppler shift.

FIGURE 20-21 = Match filtered response for a -40 dB Taylor weighted LFM waveform with a time-bandwidth product of 200 and a fractional Doppler shift of 0% (dark curve) and 15% (light curve). Both curves have been normalized to the peak of their responses.

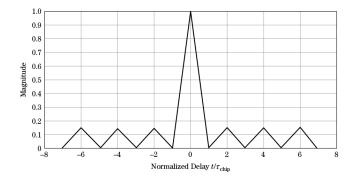


Outline

- 1 Matched filters
- **2** Range resolution
- Iinear frequency modulated waveforms
- **4** Matched filter implementations
- **5** Sidelobe reduction in an LFM waveform
- **6** Ambiguity functions
- Phase-coded waveforms
- **B** Conclusions


Phase modulation

Instead of modulating the frequency, the phase can be controlled, typically in a digital way:


FIGURE 20-25 Baseband (bottom) and RF modulated (top) phase coded waveform of length N = 11.

Matched filter

Biphase coded waveforms consist of chips exhibiting 2 possible phase states.

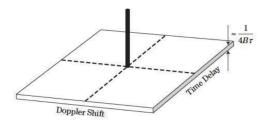
FIGURE 20-24 =

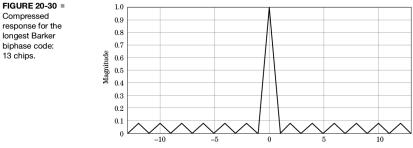
Match filtered response for the Barker phase coded waveform (Figure 20-23) maintains equal peak sidelobes of level 1/N.

Biphase codes

- Minimum peak sidelobes (MPS)
- Barker codes: achieve a 1: N peak sidelobe to mainlobe ratio
- ▶ Maximum length sequence (MLS): length $\ell = 2^n 1$, peak sidelobes $\sim 1/\sqrt{\ell}$
- Polyphase codes (not treated in this lecture)
 - Frank, P1, P2, P3, P4

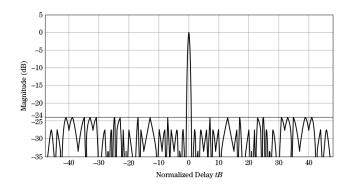
Careful design of the phase codes can result in a thumb-tack like ambiguity function.




FIGURE 20-29 The ambiguity surface associated with some phase coded waveforms is a thumb tack.

A number of filter banks can be used to search the Doppler space, applying the matched filter at the output of each filter. Enables simultaneous estimation of range and Doppler.

Barker codes


TABLE 20-4 A List of the Known Biphase Barker Codes

Code Length	Code Sequence	Peak Sidelobe Level, dB
2	+-,++	-6.0
3	+ + -	-9.5
4	+ + -+, + + +-	-12.0
5	+++-+	-14.0
7	++++-	-16.9
11	++++-+-	-20.8
13	+++++++-+-+	-22.3

Normalized Delay tB

Minimal peak sidelobe (MPS)

FIGURE 20-31 Compressed response for a 48-length Minimal Peak Sidelobe (MPS) code achieves a 3:48 peak sidelobe ratio.

Examples of minimal peak sidelobe (MPS)...

TABLE 20-6 = Example Biphase MPS Codes through Length 105

	ample Biphase MPS Co	TABLE 20-6 = (Continued)			
Code Length	Peak Sidelobe	Number of Codes	Example Code (Hexadecimal)	Code Length	Peak !
2	1	1	2	54	
3	1	1	6	55	
4	1	1	D	56	
5	1	1	1D	57	
6	2	4	OB	58	
7	1	1	27	59	
8	2	8	97	60	
9	2	10	D7	61	
10	2	5	167	62	
11	1	1	247	63	
12	2	16	9AF	64	
13	1	1	159F	65	
14	2	9	1483	66	
15	2	13	182B	67	
16	2	10	6877	68	
17	2	4	774B	69	
18	2	2	190F5	70	
19	2	ī	5BB8F	71	
20	2	3	5181B	72	
21	2	3	16BB83	73	
22	3	378	E6D5F	74	
23	3	515	38FD49	75	
24	3	858	64AFE3	76	
25	2	1	12540E7	77	
26	3	242	2380AD9	78	
27	3	388	25BBB87	79	
28	2	2	8F1112D	80	
29	3	283	164A80E7	81	
30	3	86	2315240F	82	
31	3	251	2A498C0F	83	
31	3	422	3355A780	84	
33	3	139	CCAA587F	85	
33	3	51	333FE1A55	86	
35	3	111		87	
35	3	161	796AB33 3314A083E	88	
36	3	52	574276F9E	89	
	3	52		90	
38 39	3	30	3C34AA66	91	
	3		13350BEF3C	92	
40		57	2223DC3A5A	93	
41	3	15	38EA520364	94	
42	3	4	4447B874B4	95	
43	3	12	5B2ACCE1C	96	
44	3	15	FECECB2AD7	97	
45	3	4	2AF0CC6DBF6	98	
46	3	1	3C0CF7B6556	99	
47	3	1	69A7E851988	100	
48	3	4	156B61E64FF3	101	
49	4	Not Reported	012ABEC79E46F	102	
50	4	Not Reported	025863ABC266F	103	
51	3	Not Reported	71C077376ADB4	104	
52	4	Not Reported	0945AE0F3246F	105	
53	4	Not Reported	0132AA7F8D2C6F	Sources: Compiled from	

TABLE 20-6 = (Continued)

th	Peak Sidelobe	Number of Codes	Example Code (Hexadecimal)
	4	Not Reported	0266A2814B3C6F
	4	Not Reported	04C26AA1E3246F
	4	Not Reported	099BAACB47BC6F
	4	Not Reported	01268A8ED623C6F
	4	Not Reported	023CE545C9ED66F
	4	Not Reported	049D38128A1DC6F
	4	Not Reported	0AB8DF0C973252F
	4	Not Reported	005B44C4C79EA350
	4	Not Reported	002D66634CB07450
	4	Not Reported	04CF5A2471657C6F
	4	1859	55FF84B069386665
	4	Not Reported	002DC0B0D9BCE5450
	4	Not Reported	0069B454739F12B42
	4	Not Reported	007F1D164C62A5242
	4	Not Reported	009E49E3662A8EA50
	4	Not Reported	0231C08FDA5A0D9355
	4	Not Reported	1A133B4E3093EDD57E
	4	Not Reported	63383AB6B452ED93FE
	4	Not Reported	E4CD5AF0D054433D82
	4	Not Reported	1B66B26359C3E2BC00A
	4	Not Reported	36DDBED681F98C70EAE
	4	Not Reported	6399C983D03EFDB556D
	4	Not Reported	DB69891118E2C2A1FA0
	4	Not Reported	1961AE251DC950FDDBF4
	4	Not Reported	328B457F0461E4ED7B73
	4	Not Reported	76CF68F327438AC6FA80
	4	Not Reported	CE43C8D986ED429F7D75
	4	Not Reported	0E3C32FA1FEFD2519AB32
	4	Not Reported	3CB25D380CE3B7765695F
	5	Not Reported	711763AE7DBB8482D3A5A
	5	Not Reported	CE79CCCDB6003C1E95AAA
	5	Not Reported	19900199463E51E8B4B574
	5	Not Reported	3603FB659181A2A52A38C7
	5	Not Reported	7F7184F04F4E5E4D9B56AA
	5	Not Reported	D54A9326C2C686F86F3880
	5	Not Reported	180E09434E1BBC44ACDAC8A
	5	Not Reported	3326D87C3A91DA8AFA84211
	5	Not Reported	77F80E632661C3459492A55
	5	Not Reported	CC6181859D9244A5EAA87F0
	5	Not Reported	187B2ECB802FB4F56BCCECE5
	5	Not Reported	319D9676CAFEADD68825F878
	5	Not Reported	69566B2ACCC8BC3CE0DE0005
	5	Not Reported	CF963FD09B1381657A8A098E
	5	Not Reported	1A843DC410898B2D3AE8FC362
	5	Not Reported	30E05C18A1525596DCCE600DF
	5	Not Reported	72E6DB6A75E6A9E81F0846777
	5	Not Reported	DF490FFB1F8390A54E3CD9AA
	5	Not Reported	1A5048216CCF18F83E910DD4C
	5	Not Reported	2945A4F11CE44FF664850D182/
	5	Not Reported	77FAA82C6E065AC4BE18F274C
	5	Not Reported	E568ED4982F9660EBA2F611184
	5	Not Reported	1C6387FF5DA4FA325C895958DC

Maximal length sequences

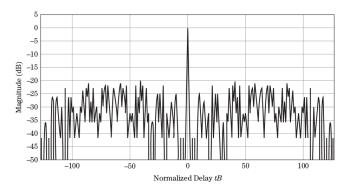


FIGURE 20-33 The compressed response for a 127-length MLS.

Comparison LFM and biphase MLS, waveform

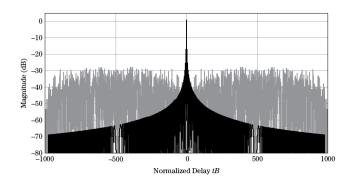
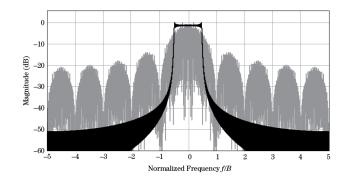



FIGURE 20-34 ■ Comparison of a compressed LFM waveform (black curve) (TB = 1000) with a compressed biphase MLS coded waveform (gray curve) (TB = 1023).

Higher average sidelobe levels in MLS, higher peak sidelobe in LFM.

Comparison LFM and biphase MLS, spectrum

FIGURE 20-35 ■ Comparison of the spectra of an LFM waveform (black curve) with a 1023-length MLS coded waveform (gray curve).

The wide spectrum of MLS can be attributed to the abrupt changes in phase. Can create an electromagnetic interference problem.

Outline

- 1 Matched filters
- **2** Range resolution
- Iinear frequency modulated waveforms
- **4** Matched filter implementations
- **5** Sidelobe reduction in an LFM waveform
- **6** Ambiguity functions
- Phase-coded waveforms

(B) Conclusions

Conclusions

- Matched filters maximize SNR for a given waveform
- ► The resulting pulse compression improves range resolution
- The LFM is a generic waveform, sidelobes can be improved by tapering
- Phase coding can produce very narrow ambiguity peaks, but with a wide spectrum