

Content

- Modelling methods
- Okumura-Hata path loss model
- COST 231 model
- Indoor models
- Wideband models
- COST 207 (GSM model)
- ITU-R model for 3G
- Directional channel models
- Multiantenna (MIMO) models
- Ray tracing & Ray launching

HT2018

Modeling methods

- · Stored channel impulse responses
 - realistic
 - reproducible
 - hard to cover all scenarios
- Deterministic channel models
 - based on Maxwell's equations
 - site specific
 - computationally demanding
- Stochastic channel models
 - describes the distribution of the field strength etc
 - mainly used for design and system comparisons

HT2018

Narrowband models Review of properties

- Narrowband models contain "only one" attenuation, which is modeled as a propagation loss, plus largeand small-scale fading.
- Path loss: Often proportional to $1/d^n$, where n is the propagation exponent (n may be different at different distances).
- Large-scale fading: Log-normal distribution (normal distr. in dB scale)
- Small-scale fading: Rayleigh, Rice, Nakagami distributions ...
 (of amplitudes and not in dB-scale)

HT2018

Wireless Communication Channels

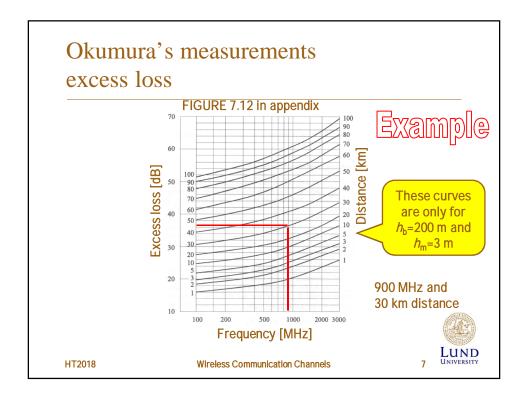
Okumura's measurements

Extensive measurement campaign in Japan in the 1960's.

Parameters varied during measurements:

Frequency 100 - 3000 MHzDistance 1 - 100 kmMobile station height 1 - 10 mBase station height 20 - 1000 m

Environment medium-size city, large city, etc.


Propagation loss is given as median values (50% of the time and 50% of the area).

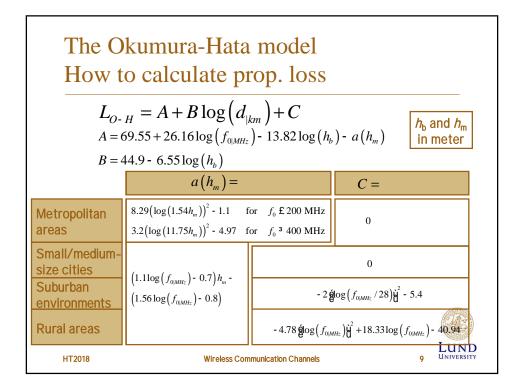
Results from these measurements are displayed in figures 7.12 – 7.14 in the appendix.

HT2018

Wireless Communication Channels

The Okumura-Hata model Background

In 1980 Hata published a parameterized model, based on Okumura's measurements.


The parameterized model has a smaller range of validity than the measurements by Okumura:

Frequency	<u> 150 – 1500</u> MHz
Distance	1 – 20 km
Mobile station height	1 – 10 m
Base station height	30 – 200 m

HT2018

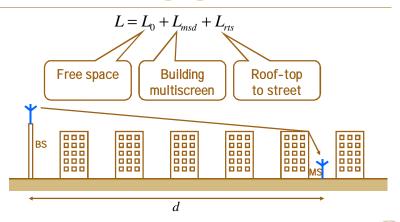
Wireless Communication Channels

The COST 231-Walfish-Ikegami model

The Okumura-Hata model is not suitable for micro cells or small macro cells, due to its restrictions on distance (d > 1 km).

The COST 231-Walfish-Ikegami model covers much smaller distances, is better suited for calculations on small cells and covers the 1800 MHz band as well.

Frequency	800 – 2000 MHz
Distance	0.02 – 5 km
Mobile station height	1 – 3 m
Base station height	4 – 50 m



HT2018

Wireless Communication Channels

U

The COST 231-Walfish-Ikegami model How to calculate prop. loss

Details about calculations can be found in the appendix.

HT2018

Wireless Communication Channels

LUND

Motley-Keenan indoor model

For indoor environments, the attenuation is heavily affected by the building structure, walls and floors play an important rule

$$PL = PL_0 + 10n \log(d/d_0) + F_{\text{wall}} + F_{\text{floor}}$$
 distance dependent path loss
$$\sup_{\text{from walls, 1-20}} \text{sum of attenuations}_{\text{from walls, 1-20}} + F_{\text{floor}}$$
 sum of attenuation from the floors (often larger than wall attenuation)

site specific, since it is valid for a particular case

HT2018

Wireless Communication Channels

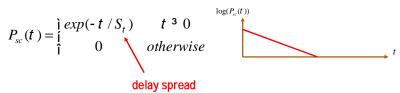
Wideband models

Tapped delay line model often used

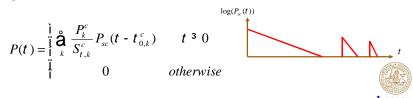
$$h(t,t) = \mathop{\mathsf{a}}_{i=1}^{N} a_{i}(t) \exp(jq_{i}(t)) d(t - t_{i})$$

Often Rayleigh-distributed taps, but might include LOS and different distributions of the tap values

Mean tap power determined by the power delay profile


HT2018

Wireless Communication Channels


13

Power delay profile

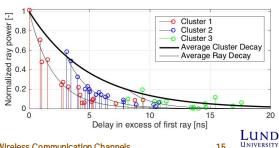
Often described by a single exponential decay

though often there is more than one "cluster"

HT2018

Wireless Communication Channels

arrival time


If the bandwidth is high, the time resolution is large so we might resolve the different multipath components

- · Need to model arrival time
- cluster arrival time (Poisson)
- The Saleh-Valenzuela model:

ray arrival time (Poisson)

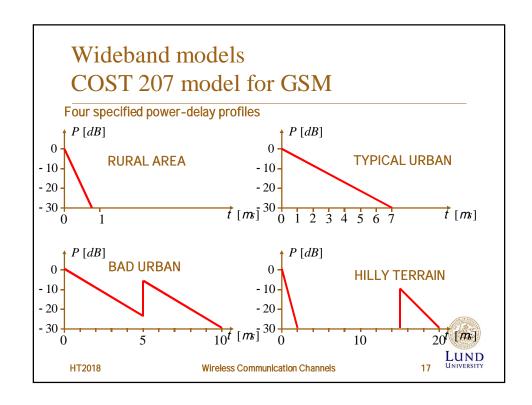
$$h(\tau) = \sum_{l=0}^{L} \sum_{k=0}^{K} \alpha_{k,l}(\tau) \delta(\tau - T_1 - \tau_{k,l})$$

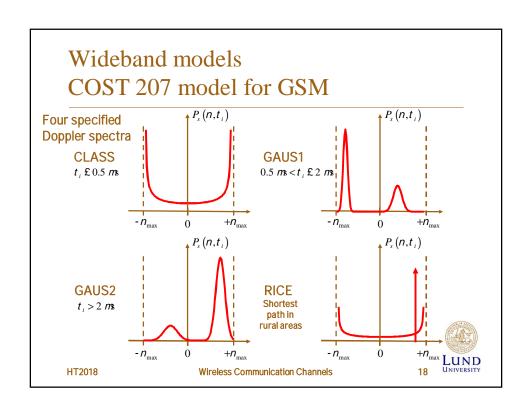
Double-exponential ray power:

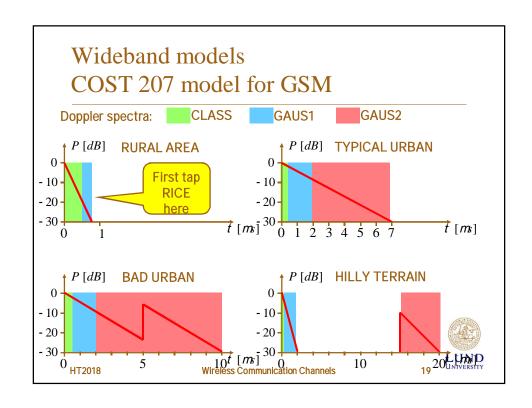
HT2018

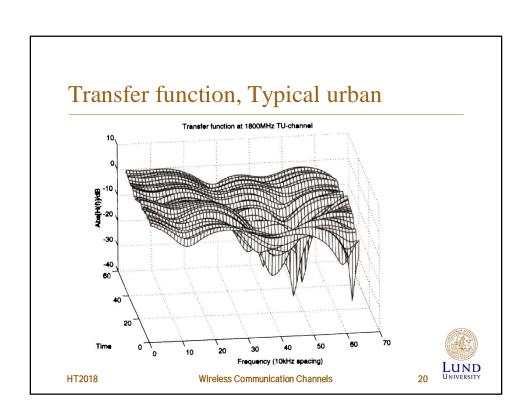
Wireless Communication Channels

Wideband models COST 207 model for GSM


The COST 207 model specifies:


- FOUR power-delay profiles for different environments.
- FOUR Doppler spectra used for different delays.


It does NOT specify propagation losses for the different environments!



HT2018

Wideband models ITU-R model for 3G

The ITU-R model specifies:

- SIX different tapped delay-line channels for three different scenarios (indoor, pedestrian, vehicular).
- TWO channels per scenario (one short and one long delay spread).
- TWO different Doppler spectra (uniform & classical), depending on scenario.
- THREE different models for propagation loss (one for each scenario).

The standard deviation of the log-normal shadow fading is specified for each scenario.

The autocorrelation of the lognormal shadow fading is specified for the vehicular scenario.

HT2018

Wireless Communication Channels

2

Wideband models ITU-R model for 3G

ns

Tap No.	delay/ns	power/dB	$delay/\mu s$	power/dB
INDOOR	CHANNEL A (50%)		CHANNEL B (45%)	
1	0	0	0	0
2	50	-3	100	-3.6
3	110	-10	200	-7.2
4	170	-18	300	-10.8
5	290	-26	500	-18.0
6	310	-32	700	-25.2
PEDESTRIAN	CHANNEL A (40%)		CHANNEL B (55%)	
1	0	0	0	0
2	110	-9.7	200	-0.9
3	190	-19.2	800	-4.9
4	410	-22.8	1200	-8.0
5			2300	-7.8
6			3700	-23.9
VEHICULAR	CHANNEL A (40%)		CHANNEL B (55%)	
1	0	0	0	-2.5
2	310	-1	300	0
3	710	-9	8900	-12.8
4	1090	-10	12900	-10.0
5	1730	-15	17100	-25.2
6	2510	-20	20000	-16.0

HT2018

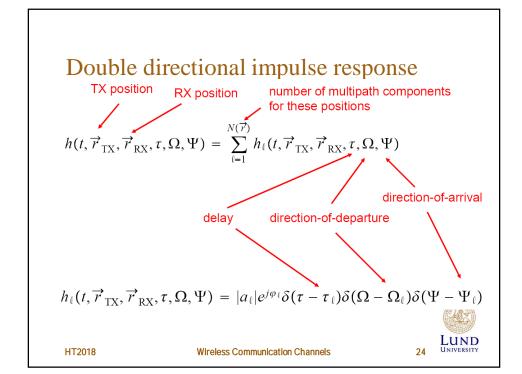
Wireless Communication Channels

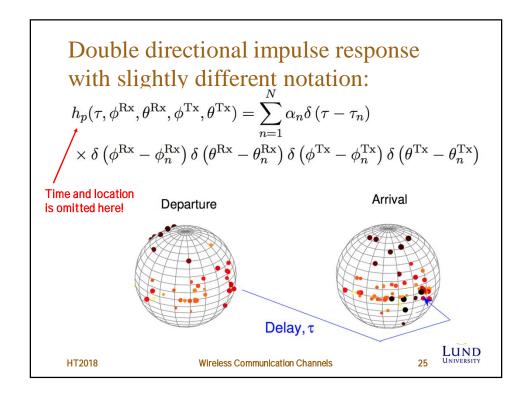
Directional channel models

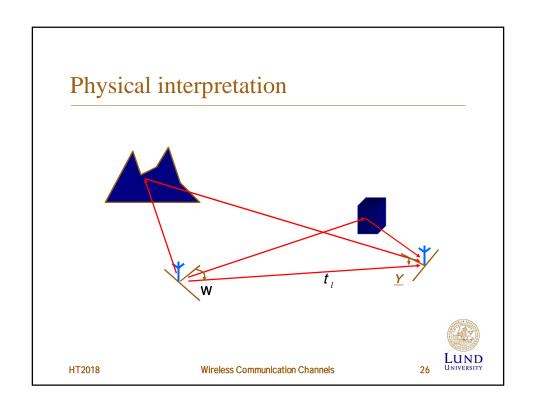
The spatial domain can be used to increase the spectral efficiency of the system

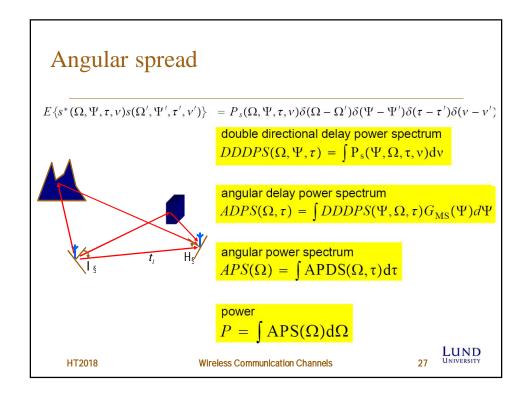
- Smart antennas
- MIMO systems

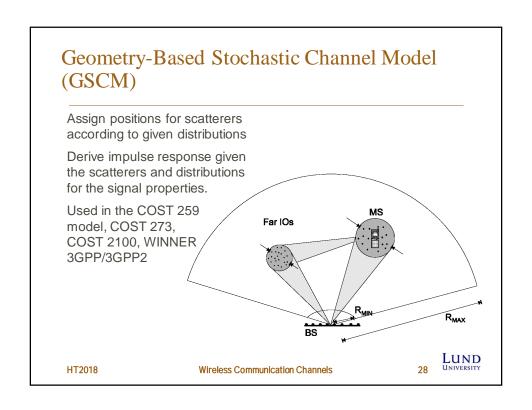
Need to know directional properties

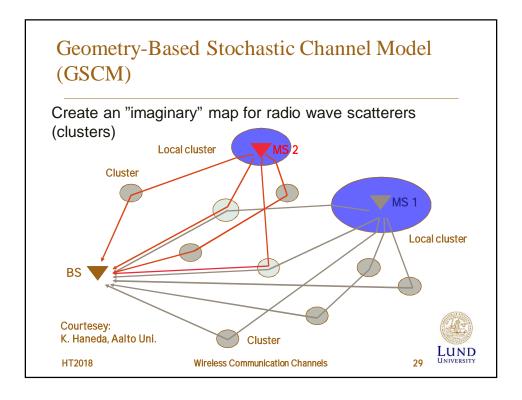

- How many significant reflection points?
- Which directions?
- Model incoming angle (direction of arrival) and outgoing angle (direction of departure) to scatterers


Model independent of specific antenna pattern




HT2018


Wireless Communication Channels



MIMO channel

channel matrix

$$\begin{split} \boldsymbol{H}(t) = & \stackrel{\acute{\text{e}}}{\hat{e}} h_{11}(t) & h_{12}(t) & L & h_{1M_{\text{Tx}}}(t) \grave{\textbf{u}} \\ \stackrel{\acute{\text{e}}}{\hat{e}} h_{21}(t) & h_{22}(t) & L & h_{2M_{\text{Tx}}}(t) \stackrel{\acute{\text{u}}}{\hat{\textbf{u}}} \\ \stackrel{\acute{\text{e}}}{\hat{e}} M & M & O & M & \acute{\textbf{u}} \\ \stackrel{\acute{\text{e}}}{\hat{e}} h_{M_{\text{Rx}}1}(t) & h_{M_{\text{Rx}}2}(t) & L & h_{M_{\text{Rx}}M_{\text{Tx}}}(t) \mathring{\textbf{u}} \end{split}$$

signal model $y(t) = \overset{D-1}{\underset{t=0}{\circ}} H(t) \times x(t-t)$

HT2018

Deterministic modeling methods

Solve Maxwell's equations with boundary conditions Problems:

- · Data base for environment
- · Computation time

"Exact" solutions

- · Method of moments
- · Finite element method
- Finite-difference time domain (FDTD)

High frequency approximation

- · All waves modeled as rays that behave as in geometrical optics
- · Refinements include approximation to diffraction, diffuse scattering, etc.

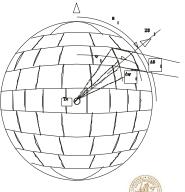
HT2018

Wireless Communication Channels

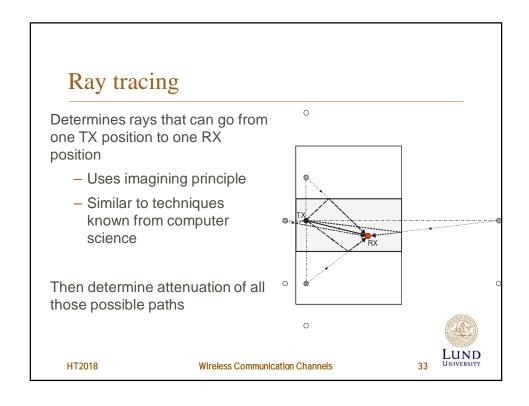
LUND

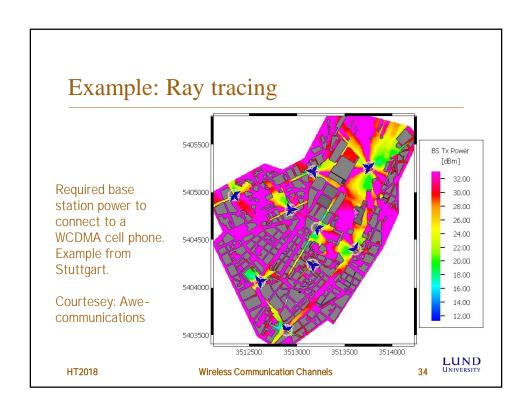
Ray launching

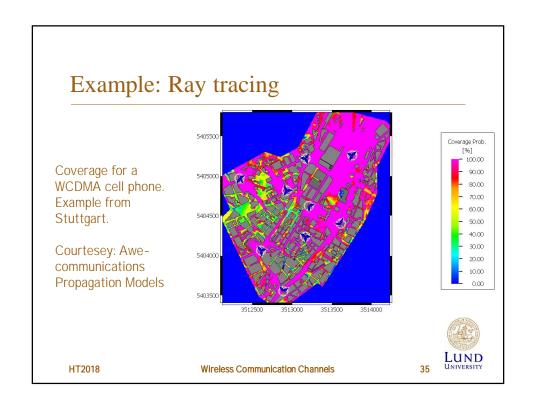
TX antenna sends out rays in different directions


We follow each ray as it propagates, until it either

- Reaches the receiver, or
- Becomes too weak to be relevant


Propagation processes


- Free-space attenuation
- Reflection
- Diffraction and diffuse scattering: each interacting object is source of multiple new rays


Predicts channel in a whole area (for one TX location)

