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Channel measures
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Doppler spectrum vs. the time
correlation function

Doppler spectrum and the time correlation of the signal are related to
each other by Fourier transformation
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Delay dispersion (a simple case)
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The WSSUS model
Assumptions

A very common wide-band channel model is the WSSUS-model.

Recalling that the channel is composed of a number of different
contributions (incoming waves), the following is assumed:

The channel is Wide-Sense Stationary (WSS), meaning
that the time correlation of the channel is invariant over time.
(Contributions with different Doppler frequency are uncorrelated.)

The channel is built up by Uncorrelated Scatterers (US),
meaning that the frequency correlation of the channels is
invariant over frequency. (Contributions with different delays
are uncorrelated.)
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Delay dispersion (many paths)

“Impulse
response”

0 Ar 2Ar 3ArdAr Ef;?,‘;g}?:i.e"’s

VT 2018 Wireless Communication Channels 7 MNvERSTE

Narrow versus wide-band channel
Impulse response

“High” BW “Medium” BW “Low” BW
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Power-delay profile

One interesting channel property is the power-delay profile (PDP),
which is the expected value of the received power at a certain delay:

P(t)=E, g\h(t,t)
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Power Delay Profile vs. the frequency correlation
function

PDP
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Condensed parameters
Power-delay profile (cont.)

We can “reduce” the PDP into more compact descriptions of the channel:

Total power (time integrated):
¥
P, =0, P(t)dt
Average mean delay:
¥
- 0_¥tP(t)dt
m Pm

Average rms delay spread:

¥
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m h
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Condensed parameters
Coherence bandwidth
Given the frequency correlation of a channel, we can define the
coherence bandwidth B:
r, (Df)
—__ r,(0) What does the coherence

bandwidth tell us?

It shows us over how large
a bandwidth we can assume
that the channel is fairly
constant.

Radio systems using a
bandwidth much smaller
than B will not notice

— Df  the frequency selectivity s
2B, of the channel.
LUND
VT 2018 Wireless Communication Channels 12 UNIVERSITY

2018-01-22



Narrow versus wide-band channel
frequency response
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Widely used approximations
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0.423 =y
T="p Be =503,
less restrictive and widely used band over which the frequency

correlation function is above 0.9
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Time variant transfer function

Measurement in the lab with a vector

network analyzer
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Time variant impulse response
What are the delays?
How is the signal
affected for different
delays?
How does it change
g with time?
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Delay cross spectral density

VT 2018 Wireless Communication Channels

How is the power for
different delays
correlated in time?
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Scattering function
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How is the power
distributed in the

Doppler and delay
domains?

Kouanbaiy Jsiddog
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Integrating the scattering function over the Doppler
— the power delay profile

-10

How is the power
distributed in the delay
domain?

Delay
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Integrating the scattering function over the delay —
the Doppler spectral density
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Channel measures
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Frequency resp (dB)

Time variant transfer function
B Measurement in the lab with a vector
i network analyzer
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Time correlation function

1
0.9+ 0.8
0.8+ 0.6
0.7F 0.41
-g 0.6F ‘g 0.2
”; 05 j'g ok
= P
of, 04
0.2F -0.6
0.1+ -0.8
0 -O.‘4 -O.‘Z E} O.‘Z O.‘4 0.6 * -0i5 -0’.4 -0’.3 -0i2 -Oil é) Oil 0i2 0i3 0i4 0i5
Position Position
Absolute value Real part
Coherence time 0.04 s
LUND
VT 2018 Wireless Communication Channels 23 UNIVERSITY
_ Frequency |
0.9 0.8
0.8 0.6
0.7 0.4
5 os § 02
é 0.5 é 0
é‘ 04 ;-)' 0.2
0.3 0.4
0.2 0.6
0.1 0.8
% a5 1 os 3 05 T 5 2 1 1s 1 o5 o o5 1 s 2
Frequency x 10° Frequency  10°
Absolute value Real part
Coherence bandwidth 20 MHz
ot
LUND
VT 2018 Wireless Communication Channels 24  UNIVERSITY

2018-01-22

12



2.6 GHz antennas

2 port
hand held

4 port
hand held

Wireless Communication Channels

VT 2018
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Measurements performed at typical work positions
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Total power

Fixed device — PC
1 NLOS
co-polarized

Relative received power [dB]
N \
Q

Distanee [m]
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Only one cluster is seen in the PDP

» exponential decay

P(t)=|bf "

e Gaussian distributed decay
constants

Relative received power [dB]

e mean10-13ns

» standard deviation 1.2 - 2.1 ns
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Condensed parameters
Power-delay profile (cont.)

We can “reduce” the PDP into more compact descriptions of the channel;

Total power (time integrated);
¥
P = 0_¥P(t)dt

Relative received power [dB]
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The coherence time is large

1
0.8

PC-HH
Zoef
[+]
& 04f . .
- 02 moving receilver
0o 5'0 160 150
Time [ms]
1R . e 4
................................ FD-HH
I s
Z08 : : .
< o4l , , , person moving
0zl in corridor
G0 5.0 1 60 160 260 zéo 360
Time [ms]
LUND
VT 2018 Wireless Communication Channels 30  UNERSTTE

2018-01-22

15



Measurements in an industrial UWB channel

4.9 GHz bandwidth

49 TX-RX positions 49

7*7 Virtual MIMO system
Antenna array elements
separation 5cm

TX-RX Separations 3,6,10,12m
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UWB channels

Delay spread is mainly dependent on distance to the scatterers, not on the
bandwidth
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Car to car communication

Cars driving in same direction with a distance of 50 m, 70 km/h, rural area
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Time variant impulse response

Let”s take a closer
look at the Doppler
shifts here

Time [s]
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Delay [ps]
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Scattering function, t=8.5-8.65 s
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