
Some Notes on Reverse Engineering
and x86 Assembly

Advanced Computer Security

Jonathan Sönnerup

October 11, 2016



0x100 Introduction

“... there’s way too much
information to decode the
Matrix. You get used to it,
though. Your brain does the
translating. I don’t even see the
code. All I see is blonde,
brunette, redhead.”

– Cypher, The Matrix

High-level languages such as Java and C are based on English keywords representing
what the programmer wants to to rather than how the processor should execute it.
However, a processor does not understand if, while or Turtle t = new Turtle().

The processor is a rather stupid piece of hardware that can move data to and from
registers, fetch data from memory, perform simple math, and jump around in the code.
Thus, to talk directly to the processor, we need something “lower” than C and Java —
the assembly language. The assembly language is the language of the processor, using
keywords like mov, add, cmp and jmp. This is known as a processor’s instruction set.

An assembler is a piece of software that converts assembly code into machine code
(ones and zeros). Different assemblers may have different syntax for the same assembly
language. The two major syntaxes are Intel and AT&T syntax. From this point forward,
Intel syntax will be used. The assembler used in the examples is called NASM. The
specific Intel syntax may differ between assemblers, but the overall structure is the same.

0x200 The x86 Processor

Here, the x86 processor is introduced along with the x86 assembly language.

0x300 Registers

The x86 processor have eight general purpose registers, each 32-bit wide. These registers
are called (not case-sensitive)

EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP

Two of the registers are reserved for special purpose — the stack pointer (ESP) and the
base pointer (EBP). This means that we effectively have six general purpose registers,
shown in Figure 1. Even though the registers are 32-bit wide, we may access smaller
parts. If we take the EAX as an example, we may access the lower 16-bit value by calling
the register AX (EAX actually stands for Extended AX). We may further divide the AX

register into the upper and lower 8-bit values called AH and AL. The same applies for
all E*X registers. To keep track of the current instruction to execute, the processor uses
the EIP register.

Some example usage of the registers are shown below (“;” defines a comment).

1



mov eax, 0x12345678 ; moves 0x12345678 to eax

mov bx, 0xaabb ; moves 0xaabb to the lower 16 bits of ebx

mov cl, 0x37 ;

mov ch, 0x13 ; moves 0x1337 to the lower 16 bits of ecx

mov al, cl ; move 0x37 to al

; eax = 0x12345637

Figure 1: The x86 registers.

0x400 Memory and Addressing

0x410 Memory Sections

To run a program, we must first load it into the memory. Different parts of the program
is placed in different sections, or segments, of the memory. A typical program can be
divided into three sections:

text The text section contains the executable code. The section must begin with the
declaration global main, which tells the operating system where to begin execute
the code. This is equivalent to the main method in C and Java. The text section
is declared as:
section .text

global main

main:

<code>

data The data section contains initialized static data, i.e. global variables and static
local variables. The data section is read-write since the variables can be altered

2



at run time. This is in constrast to the read-only data section (.rodata), which
contains static constants rather than variables. The data section is declared as:
section .data

bss The bss section is similar to the data section but contains uninitialized data instead.
For example, the variable static int i ends up in the bss section. The bss
section is declared as:
section .bss

There are two other data sections in the memory used to store local variables and
dynamically allocated memory.

stack The stack section contains the stack of the program. It is implemented as a LIFO
(Last In First Out) structure. In the x86, the stack begins at a high memory
address and grows towards lower addresses. Data is pushed to the stack, making
it grow downwards. A stack pointer register keeps track of the top of the stack,
the ESP register.

heap The heap section is used for dynamic memory allocation. The heap grows up,
towards the stack.

The memory sections are summarized in Figure 2.

Figure 2: Memory sections of a program.

3



0x420 Addressing Memory

Just like C and Java, we can declare variables of different sizes, as in the example below.

section .data

myvar1 db 0x65 ; declare a byte, called myvar (= 0x65)

myvar2 dw 0x1337 ; declare a 2-byte variable

myvar3 dd 0xdeadbeef ; declare a 4-byte variable

myarr1 db 1, 2, 3 ; declare a byte array with 3 values

mystr db "hello",0 ; declare a NULL-terminated string

Notice that there is no such thing as signed or unsigned types. It is up to the programmer
to handle the variables in a suitable way.

The variable names myvar1, myarr1 etc. are replaces by their memory address by
the assembler. The x86 is a 32-bit architecture, thus the addresses are 32-bit quantities.
To use the variables in the assembly code, we must enclose the variable name with
brackets. This tells the assembler that we want the value at the specific address given
(variable name = address). Some examples of how to use addresses are shown below.

mov al, [myvar1] ; move the 1-byte value at myvar1 to al

mov [myvar2], bx ; move the 2-byte value in BX to myvar2

mov edx, [edx+ecx] ; move the 4-byte value at edx+ecx

mov edx, [esi+4*ebx]; move the 4-byte value at esi+4*ebx

In the code above, the assembler knows implicitly how much data to move, due to the
size of the variables. Sometimes, the size is ambiguous and we have to tell the assembler
how much data to operate on. The code below shows an example of an ambiguous data
size.

mov [eax], 0x42

Should we move the byte 0x42 to the address at eax, or the 2-byte 0x0042, or the 4-byte
0x00000042? To solve the problem, a size directive is added. The size directives BYTE

PTR, WORD PTR and DWORD PTR indicates sizes of 1, 2 and 4 bytes. Note that in NASM
syntax, the PTR keyword is discarded. An example:

mov BYTE [eax], 0x42 ; moves the byte 0x42 to the address in eax

mov WORD [eax], 0x42 ; moves the 2-byte 0x0042 to ...

mov DWORD [eax], 0x42 ; moves the 4-byte 0x00000042 to ...

0x430 Stack Manipulation

We have a very limited number of registers to store temporary data in, and it would
be inconvenient to declare a bunch of variables. Since we can not remove the variables
during run time, they would take up uneccessary space. The stack is our saviour — we
can allocate and deallocate memory as we go. To add a value on the stack, we must

4



first allocate space in the memory. Remember that the stack grows downwards, so in
order to allocate 4-bytes on the stack we subtract the stack pointer, ESP by 4 then move
the value to that address, as shown below.

sub esp, 4

mov DWORD [esp], ebx ; moves the value in ebx onto the stack

To retreive the value on the stack and deallocating the memory, we move the value and
simply add 4 to the ESP.

mov ecx, DWORD [esp]

add esp, 4

Note, that this does not clear the value but it will be overwritten sooner or later, thus
it should not be used! There is a simpler way to perform the actions above, by using
the push and pop instructions, as shown below.

push ebx ; allocate 4 bytes on the stack and move ebx there

pop ecx ; move the value on the stack to ecx and deallocate 4 bytes

While the ESP register keeps track of the top of the stack, the EBP register keeps
track of the bottom of the stack. The data area enclosed by ESP and EBP is known as
a program’s stack frame, depicted in gray in Figure 3.

0xFFFFD4F0

0xFFFFD4EC

0xFFFFD4E8

0xFFFFD4E4

0xFFFFD4E0

0xFFFFD4DC

0xFFFFD4D8

0xFFFFD4D4

0xFFFFD4D0

StackAddress

parameter 2

parameter 1

return address

saved frame ptr

int xx

int yy

char arr[4]

int zz

...

[ebp+8]

[ebp+4]

[ebp]

[ebp-4]

[esp]

[esp-4]

Figure 3: The stack with a highlighted stack frame.

5



0x500 Calling Conventions

When calling a subroutine, arguments are passed to the subroutine and the return value
is passed back out. There must also be an agreement on how to manage the stack and
its stack frame. How this is implemented is known as the calling convention. In the
C language, there are three major calling conventions: stdcall, cdecl and fastcall. The
function calling a subroutine is known as the caller, while the subroutine called is known
as the callee.

0x510 cdecl

This is the default convention used in the C language. If the compiler used does not use
this convention, it may be specified by prepending the keyword cdecl to the function
declaration.

The arguments are pushed on the stack in right-to-left order, i.e. the last argument
first, and the return value is placed in the EAX register. The caller is responsible for
cleaning the stack.

Let’s look at the following C code:

_cdecl int myadd(int x, int y)

{

return x + y;

}

This would produce the following assemly code:

myadd:

push ebp ;

mov ebp, esp ; set up the stack frame

mov eax, [ebp+8] ; fetch "x"

mov ebx, [ebp+12] ; fetch "y"

add eax, ebx ; eax = x + y

mov esp, ebp ;

pop ebp ; restore old stack frame

ret ; return

The calling function (caller) would look like:

push 5 ; y = 5

push 7 ; x = 7

call myadd ; myadd(7, 5)

add esp, 8 ; clean up the stack

0x520 stdcall

This is the standard convention for the Win32 API, so stdcall is also known as winapi.
To specify the usage of this convention, stdcall may be prepended to a function
declaration.

6



Just like cdecl, the arguments are passed right-to-left and the return value is placed
in the EAX register. In the Microsoft documentation, they claim that arguments are
passed left-to-right, however this is not the case. Unlike cdecl, the callee is responsible
for cleaning the stack.

The following C code:

_stdcall int myadd2(int x, int y)

{

return x + y;

}

produces the assembly code:

myadd2:

push ebp ;

mov ebp, esp ; set up stack frame

mov eax, [ebp+8] ; fetch "x"

mov ebx, [ebp+12] ; fetch "y"

add eax, ebx ; eax = x + y

mov esp, ebp ;

pop ebp ; restore old stack frame

ret 8 ; return and clean up stack

Note the ret 8 statement. The ret instruction takes an optional argument that tells
the program how many byte to pop off the stack. This is equivalent to add esp, 8.

The calling function would look like:

push 5 ; y = 5

push 7 ; x = 7

call myadd2 ; myadd2(7, 5)

0x530 fastcall

Coming soon

0x540 Tips & Tricks

Setting up the stack frame is so common that there are macros defined in NASM to
do this for you, namely enter a,b and leave. In the enter macro, the a parameter
specifies how much memory to allocate for on the stack for local variables, and the b

parameter specifies the nesting level of the subroutine. The latter will not be further
discussed, and may be set to 0.

enter 8,0

is equivalent to

7



push ebp

mov ebp, esp

sub esp, 8

The leave instruction is equivalent to

mov esp, ebp

pop ebp

0x600 x86 Disassembly

Coming soon

8


