Some Crypto Math

Primes in Computer Security

- Exponentiation mod a prime is easy, but the reverse is hard
- Easy: Compute $y=g^{x} \bmod p$
- Hard: Given y, g and p : Solve for x ("discrete logarithm")
- Multiplying two primes is easy, but the reverse is hard
- Easy: Compute $n=p q$
- Hard: Given n : Solve for p and q ("factoring")
- These lead to cryptography that's easy to use, but hard to break

Euclidian Algorithm

Example:

- Find $\operatorname{gcd}(1547,560)$
- $1547=2 * 560+427$
- $560=1 * 427+133$
- $427=3 * 133+28$
- $133=4 * 28+21$
- $21=1 * 21+7$
- $21=3^{\star} 7+0$

Thus $\operatorname{gcd}(1547,560)=7$

Extended Euclidian GCD Algorithm

- In several cryptographic algorithms you want to find an inverse a^{-1} such as $a^{*} a^{-1}=1 \bmod n$
- We use the fact that
- if $d=\operatorname{gcd}(a, b)$, where $a>b$, then there exists integer u and v such that $d=u^{*} a+v^{*} b$.
- finding u and v can be done in $\mathrm{O}\left(\log ^{3} \mathrm{a}\right)$
- Then we use an extended Euclidian algorithm to find $\mathrm{a}^{-1} \bmod \mathrm{n}$ under the condition $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$

Let Inverse $(a, n)=a^{-1}$

Extended Euclidian GCD Algorithm

■ Example: Find inverse of $3 \bmod 460$

i	y	g	u	v
0	-	460	1	0
1	-	3	0	1
2	153	1	1	-153
3	3	0	-3	460

- So, $3^{-1} \bmod 460=-153 \bmod 460=307 \bmod 460$

Algorithms to find Inverses

Algorithms to find Inverse(a, n)

1. Search $1, \ldots, n-1$ until an a^{-1} is found with $a . a^{-1} \bmod n$
2. if $\varphi(n)$ is known, then from Euler's Generalization

- $a^{-1}=a^{\varphi(n) \cdot 1} \bmod n$

3. Otherwise use Extended Euclid's algorithm for inverse

Chinese Remainder Theorem (CRT)

- The system is
- $\mathrm{x}=\mathrm{a}_{1} \bmod \mathrm{~m}_{1}$
- $\mathrm{x}=\mathrm{a}_{2} \bmod \mathrm{~m}_{2}$
-
- $\mathrm{x}=\mathrm{a}_{\mathrm{r}} \bmod \mathrm{m}_{\mathrm{r}}$
- Assume that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for $i \neq j$.
- Then the system has a unique solution modulo $\mathrm{M}=\mathrm{m}_{1} \mathrm{~m}_{2} \ldots \mathrm{~m}_{\mathrm{r}}$
- In particular when $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{r}}$ are distinct primes

Chinese Remainder Theorem (CRT)

■ Motivation: According to D.Wells, the following problem was posed by Sun Tsu Suan-Ching (4th century AD):

There are certain things whose number is unknown. Repeatedly divided by 3 , the remainder is 2 ; by 5 the remainder is 3 ; and by 7 the remainder is 2 . What will be the number?

- Application
- We want to solve a system of congruences to different moduli
- Compute $c^{d} \bmod n$ faster by computing $\bmod p$ and $\bmod q$ then combining results with the CRT

Chinese Remainder Theorem

The Chinese remainder theorem provides a way of solving an equation mod n, where $n=p^{*} q$ and p and q are prime, solving equations $\bmod p$ and $\bmod q$

- Let $b_{1}=q^{-1} \bmod p$ and $b_{2}=p^{-1} \bmod q$
- If $a=a_{1} b_{1} q+a_{2} b_{2} p$ we have that
- $a=a_{1}\left(b_{1} q\right)+a_{2}\left(b_{2} p\right)=a_{1} \bmod p$
- $a=a_{1}\left(b_{1} q\right)+a_{2}\left(b_{2} p\right)=a_{2} \bmod q$
- So if I know a_{1} and $\mathrm{a}_{2} I$ know a

Example

- $p=5, q=7, n=35$
- Weights: $b_{1}=3$ (i.e. $\left.b_{1} \times q \bmod p=1\right), b_{2}=3$
- Suppose $x \bmod 5=2$ and $x \bmod 7=1$
- Then $x \bmod 35=\left[(x \bmod p) b_{1} q+(x \bmod q) b_{2} p\right] \bmod 35$

$$
=[2 \times 3 \times 7+1 \times 3 \times 5] \bmod 35
$$

$$
=[42+15] \bmod 35
$$

$$
=57 \bmod 35
$$

$$
=22
$$

■ Check: $22 \bmod 5=2,22 \bmod 7=1$

Elliptic Curve Cryptography

- majority of public-key crypto (RSA, D-H) use either integer or polynomial arithmetic with very large numbers/polynomials
- imposes a significant load in storing and processing keys and messages
- an alternative is to use elliptic curves
- offers same security with smaller bit sizes

Complexity of ops on n-bit numbers

- Addition: O(n)
- Multiplication:
- Schoolbook method: O(n^{2})
- Karatsuba-Ofman: $O\left(3 n^{\left.\log _{2} 2(3)\right)}=O\left(n^{1.555}\right)\right.$ (larger than $320-640$ bits)
- Schönhagen-Strassen: $O(n \log n \log \log n)$
(in practice for numbers larger than 2^{15} to 2^{17} bits)
- Mod multiplication: $O\left(n^{2}\right)$
- Mod exponentiation: avg 1.5n Mod multiplications

Real Elliptic Curves

- an elliptic curve is defined by an equation in two variables $x \& y$, with coefficients
- consider a cubic elliptic curve of form
- $y^{2}=x^{3}+a x+b$
- where x, y, a, b are all real numbers
- also define zero point 0
- An addition operation for elliptic curves:
- geometrically sum $\mathrm{Q}+\mathrm{R}$ of two point Q and R is the reflection of intersection R

Real Elliptic Curve Example ("addition of points")

4/10/2006-B. Smeets
(b) $y^{2}=x^{3}+x+1$

IT - Secure Sys \& Applic - Some crypto math

Finite Elliptic Curves

- Elliptic curve cryptography uses curves whose variables \& coefficients are finite
- have two families commonly used:
- prime curves $E_{p}(a, b)$ defined over Z_{p}
- use integers modulo a prime
- best in software

■ binary curves $\mathrm{E}_{2 \mathrm{~m}}(\mathrm{a}, \mathrm{b})$ defined over $\mathrm{GF}\left(2^{n}\right)$

- use polynomials with binary coefficients
- best in hardware
- tricky: in choice and implementation patents

Elliptic Curve Cryptography

- ECC addition is analog of modulo multiply (ECC repeated addition is analog of modulo exponentiation)
- need "hard" problem equiv to discrete log
- $\mathrm{Q}=\mathrm{kP}$, where Q, P belong to a prime curve
- is "easy" to compute Q given k, P
- but "hard" to find k given Q, P
- known as the elliptic curve logarithm problem
- Certicom example: $\mathrm{E}_{23}(9,17)$
- U.S. National Security Agency: in its Suite B set of recommended algorithms ECC is included and allowed for protecting information classified up to top secret with 384-bit keys

