

3

Euclidian Algorithm

The Euclidian Algorithm is a way of finding the gcd(a,b) without needing to factor a and b.

- Assume a>b
- First find q_1 and r_1 such as $a=b^*q_1+r_1$
- Then find q_2 and r_2 such as $b = q_2 r_1 + r_2$
- Find q's and r's using $r_{i,2}=q_i^*r_{i,1}+r_i$ for i>2 until $r_i=0$.
- Then gcd(a,b)=r_{i-1}
- The Euclidian algorithm runs in O(log³(a)); so it is very fast

2

Extended Euclidian GCD Algorithm

- In several cryptographic algorithms you want to find an inverse a⁻¹ such as a*a⁻¹=1 mod n
- We use the fact that
 - if d = gcd(a,b), where a > b, then there exists integer u and v such that $d = u^*a + v^*b$.
 - finding u and v can be done in O(log³a)
- Then we use an extended Euclidian algorithm to find a⁻¹mod n under the condition gcd(a, n) = 1

```
Let Inverse(a,n) = a^{-1}
```

4/10/2006-B. Smeets

IT - Secure Sys & Applic - Some crypto math

Extended Euclidian GCD Algorithm

Example: Find inverse of 3 mod 460 i У g u v 0 460 1 -0 3 1 0 1 -153 2 153 1 1 3 3 0 -3 460 ■ So, 3⁻¹ mod 460 = -153 mod 460 = 307 mod 460

Euler phi-function

Euler ϕ function

5

7

 $\varphi(n) = |(0 \le b < n)| \gcd(b,n) = 1)|$, i.e. the number of positive integers b less than n that are relatively prime to n

How to compute $\varphi(n)$:

- If p is prime than $\varphi(p) = p-1$
- if gcd(m,n) = 1, then $\varphi(m \times n) = \varphi(m) \times \varphi(n)$,
- φ(p^α)=p^α p^{α-1}

Algorithms to find Inverses

Algorithms to find Inverse(a,n)

- 1. Search 1,...,n-1 until an a^{-1} is found with $a.a^{-1} \mod n$
- 2. if $\phi(n)$ is known, then from Euler's Generalization
 - $a^{-1} = a^{\phi(n)-1} \mod n$
- 3. Otherwise use Extended Euclid's algorithm for inverse

IT - Secure Sys & Applic - Some crypto math

Chinese Remainder Theorem (CRT)

- The system is
 - $x = a_1 \mod m_1$
 - $x = a_2 \mod m_2$
 - **.**...
 - $x = a_r \mod m_r$
- Assume that $gcd(m_i, m_j) = 1$ for $i \neq j$.
 - Then the system has a unique solution modulo $M{=}m_1m_2{\ldots}m_r$
 - In particular when m_1, m_2, \ldots, m_r are distinct primes

Chinese Remainder Theorem (CRT)

 Motivation: According to D.Wells, the following problem was posed by Sun Tsu Suan-Ching (4th century AD):

There are certain things whose number is unknown. Repeatedly divided by 3, the remainder is 2; by 5 the remainder is 3; and by 7 the remainder is 2. What will be the number?

Application

- We want to solve a system of congruences to different moduli
- Compute c^d mod n faster by computing mod p and mod q then combining results with the CRT

```
4/10/2006-B. Smeets
```

9

11

```
IT - Secure Sys & Applic - Some crypto math
```

Chinese Remainder Theorem

The Chinese remainder theorem provides a way of solving an equation mod n, where $n=p^*q$ and p and q are prime, solving equations mod p and mod q

- Let $b_1 = q^{-1} \mod p$ and $b_2 = p^{-1} \mod q$
- If $a = a_1b_1q + a_2b_2p$ we have that
 - $a = a_1(b_1q) + a_2(b_2p) = a_1 \mod p$
 - $a = a_1(b_1q) + a_2(b_2p) = a_2 \mod q$
- So if I know a₁ and a₂ I know a

Example

• p = 5, q = 7, n = 35• Weights: $b_1 = 3$ (i.e. $b_1 \times q \mod p = 1$), $b_2 = 3$ • Suppose $\underline{x \mod 5} = 2$ and $\underline{x \mod 7} = 1$ • Then $x \mod 35$ = $[(x \mod p) \ b_1 \ q + (x \mod q) \ b_2 \ p] \mod 35$ = $[2 \times 3 \times 7 + 1 \times 3 \times 5] \mod 35$ = $[42 + 15] \mod 35$ = 22• Check: 22 mod 5 = 2, 22 mod 7 = 1 17.5ecure Sys & Applic - Some crypto math

Elliptic Curve Cryptography

- majority of public-key crypto (RSA, D-H) use either integer or polynomial arithmetic with very large numbers/polynomials
- imposes a significant load in storing and processing keys and messages
- an alternative is to use elliptic curves
- offers same security with smaller bit sizes

Complexity of ops on n-bit numbers

- Addition: O(n)
- Multiplication:
 - Schoolbook method: O(n²)
 - Karatsuba-Ofman: O(3n log_2(3))=O(n^{1.585}) (larger than 320–640 bits)
 - Schönhagen-Strassen: O(n log n log log n) (in practice for numbers larger than 2¹⁵ to 2¹⁷ bits)
- Mod multiplication: O(n²)
- Mod exponentiation: avg 1.5n Mod multiplications

4/10/2006-B. Smeets

IT - Secure Sys & Applic - Some crypto math

14

Real Elliptic Curves

- an elliptic curve is defined by an equation in two variables x & y, with coefficients
- consider a cubic elliptic curve of form
 - $y^2 = x^3 + ax + b$
 - where x,y,a,b are all real numbers
 - also define zero point O
- An addition operation for elliptic curves:
 - geometrically sum Q+R of two point Q and R is the reflection of intersection R

13

Finite Elliptic Curves

- Elliptic curve cryptography uses curves whose variables & coefficients are finite
- have two families commonly used:
 - <u>prime curves</u> $E_{p}(a, b)$ defined over Z_{p}
 - use integers modulo a prime
 - · best in software
 - binary curves $E_{2^m}(a, b)$ defined over $GF(2^n)$
 - use polynomials with binary coefficients
 - best in hardware
 - · tricky: in choice and implementation patents

4/10/2006-B. Smeets

IT - Secure Sys & Applic - Some crypto math

18

Elliptic Curve Cryptography

- ECC addition is analog of modulo multiply (ECC repeated addition is analog of modulo exponentiation)
- need "hard" problem equiv to discrete log
 - Q=kp, where Q,P belong to a prime curve
 - is "easy" to compute Q given k,P
 - but "hard" to find k given Q,P
 - known as the elliptic curve logarithm problem
- Certicom example: E₂₃(9,17)
- U.S. National Security Agency: in its Suite B set of recommended algorithms ECC is included and allowed for protecting information classified up to top secret with 384-bit keys