9.8. A wide-band Gaussian channel is split in four sub-channels, each with bandwidth $W_{\Delta}=1 \mathrm{kHz}$.

The attenuations and noise parameters are

$$
\begin{aligned}
\left|H_{i}\right|^{2} & =\left(\begin{array}{llll}
-36 & -30 & -16 & -21
\end{array}\right) \quad[\mathrm{dB}] \\
N_{0} & =\left(\begin{array}{llll}
-108 & -129 & -96 & -124
\end{array}\right) \quad[\mathrm{dBm} / \mathrm{Hz}]
\end{aligned}
$$

With the total allowed power on the echannel $P=-50 \mathrm{dBm}$, what is the highest possible bit rate on the channel?

Solution:

Use the water-filling procedure and iterate the sub-channel powers.

1. The first itareation gives

$$
\begin{aligned}
B W_{\Delta} & =2.08 \cdot 10^{-5} \mathrm{~mW} \\
P_{i} & =\left(\begin{array}{llll}
-0.42 & 0.21 & 0.11 & 0.21
\end{array}\right) \cdot 10^{-4} \mathrm{~mW}
\end{aligned}
$$

Since the first sub-channel has negative power it should be turned of.
2. Second iteartion:

$$
\begin{aligned}
B W_{\Delta} & =6.73 \cdot 10^{-6} \mathrm{~mW} \\
P_{i} & =\left(\begin{array}{llll}
0 & 0.66 & -0.33 & 0.67
\end{array}\right) \cdot 10^{-5} \mathrm{~mW}
\end{aligned}
$$

Again, one sub-channel has negative power and sub-channel 3 is turned off.
3. Third iteration

$$
\begin{aligned}
B W_{\Delta} & =5.09 \cdot 10^{-6} \mathrm{~mW} \\
P_{i} & =\left(\begin{array}{llll}
0 & 0.496 & 0 & 0.504
\end{array}\right) \cdot 10^{-5} \mathrm{~mW}
\end{aligned}
$$

Since all derived powers in the third iteration are positive, they can be used to derive the capacity as,

$$
C=5.34+6.67=12 \mathrm{~kb} / \mathrm{s}
$$

9.9. A 3×3 MIMO system with maximum transmit power $P=10$ and the noise at each receive antenna Gaussian with variance $N=1$, has the following attenuation matrix

$$
H=\left(\begin{array}{lll}
0.05 & 0.22 & 0.73 \\
0.67 & 0.08 & 0.60 \\
0.98 & 0.36 & 0.45
\end{array}\right)
$$

Derive the channel capacity for the system. What is the capacity achieving distribution on the transmitted vector \boldsymbol{X} ?

Hint: The singular value decomposition of H gives

$$
U=\left(\begin{array}{ccc}
-0.36 & 0.88 & 0.30 \\
-0.59 & 0.03 & -0.01 \\
-0.72 & -0.47 & 0.51
\end{array}\right), S=\left(\begin{array}{ccc}
1.51 & 0 & 0 \\
0 & 0.60 & 0 \\
0 & 0 & 0.19
\end{array}\right), V=\left(\begin{array}{ccc}
-0.74 & -0.65 & -0.16 \\
-0.26 & 0.05 & 0.97 \\
-0.62 & 0.76 & -0.20
\end{array}\right)
$$

Solution:

To start, water-filling should be used to distribute the power over the channels with attenuation according to the singular values. The first iteration gives

$$
\begin{aligned}
& B=\frac{1}{3}\left(P+\sum_{i=1}^{3} \frac{N}{s_{i}^{2}}\right)=13.63 \\
& P_{i}=B-\frac{N}{s_{i}^{2}}=\left(\begin{array}{lll}
13.20 & 10.86 & -14.06
\end{array}\right)
\end{aligned}
$$

Since channel $i=3$ has a negative value it should be canceled. The second iteration only contains channels $i=1,2$,

$$
\begin{aligned}
B & =\frac{1}{2}\left(P+\sum_{i=1}^{2} \frac{N}{s_{i}^{2}}\right)=6.60 \\
P_{i} & =B-\frac{N}{s_{i}^{2}}=\left(\begin{array}{ll}
6.17 & 3.83
\end{array}\right)
\end{aligned}
$$

where the power vales are all positive and the iteration can stop. Then the capacity is

$$
C=\sum_{i=1}^{2} \frac{1}{2} \log \left(1+\frac{s_{i}^{2} P_{i}}{N}\right)=1.96+0.63=2.59 \mathrm{bit} / \text { channel use }
$$

To achieve this information transmission the distribution on the (transformed) transmitter is $\widetilde{\boldsymbol{X}} \sim$ $\mathrm{N}\left(\mathbf{0}, \Lambda_{\tilde{X}}\right)$, where

$$
\Lambda_{\tilde{X}}=\left(\begin{array}{ccc}
6.17 & 0 & 0 \\
0 & 3.83 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

That gives the distribution $X \sim N\left(0, \Lambda_{X}\right)$, where

$$
\Lambda_{X}=V \Lambda_{\tilde{X}} V^{T}=\left(\begin{array}{lll}
5.01 & 1.05 & 0.95 \\
1.05 & 0.41 & 1.12 \\
0.95 & 1.12 & 4.58
\end{array}\right)
$$

9.10. The 5×4 MIMO attenuation matrix

$$
H=\left(\begin{array}{lllll}
0.76 & 0.40 & 0.61 & 0.90 & 0.42 \\
0.46 & 0.73 & 0.97 & 0.23 & 0.73 \\
0.61 & 0.96 & 0.63 & 0.10 & 0.94 \\
0.36 & 0.88 & 0.78 & 0.83 & 0.30
\end{array}\right)
$$

has the singular value decomposition $H=U S V^{T}$ where

$$
\operatorname{diag}(S)=\left(\begin{array}{llll}
2.85 & 0.89 & 0.46 & 0.30
\end{array}\right)
$$

What is the channel capacity for the system if $P=5$ and $N=2$?

Solution:

Starting the water-filling to find the power distribution over the channels $i \in\{1,2,3,4\}$ gives

$$
\begin{aligned}
B_{1} & =\frac{1}{4}\left(P+\sum_{i=1}^{4} \frac{N}{s_{i}^{2}}\right)=9.90 \\
P_{i} & =B_{1}-\frac{N}{s_{i}^{2}}=\left(\begin{array}{llll}
9.65 & 7.38 & 0.45 & -12.48
\end{array}\right)
\end{aligned}
$$

Removing channel $i=4$ due to its negative power, the next iteration uses the channels $i \in\{1,2,3\}$,

$$
\begin{aligned}
B_{2} & =\frac{1}{3}\left(P+\sum_{i=1}^{3} \frac{N}{s_{i}^{2}}\right)=5.74 \\
P_{i} & =B_{2}-\frac{N}{s_{i}^{2}}=\left(\begin{array}{lll}
5.49 & 3.22 & -3.71
\end{array}\right)
\end{aligned}
$$

Again, one of the channels has been assigned negative power so it should be removed. Continuing with the channels $i \in\{1,2\}$ gives

$$
\begin{aligned}
B_{3} & =\frac{1}{2}\left(P+\sum_{i=1}^{2} \frac{N}{s_{i}^{2}}\right)=3.88 \\
P_{i} & =B_{3}-\frac{N}{s_{i}^{2}}=\left(\begin{array}{ll}
3.63 & 1.37
\end{array}\right)
\end{aligned}
$$

All channels have positive powers which gives the capacity

$$
C=\sum i=1^{2} \frac{1}{2} \log \left(1+\frac{s_{i}^{2} P_{i}}{N}\right)=1.99+0.31=2.30 \text { bit/channel use }
$$

The distribution on $\widetilde{\boldsymbol{X}}$ is Gaussian with zero mean and covariance matrix

$$
\Lambda_{\tilde{X}}=\left(\begin{array}{ccccc}
3.63 & 0 & 0 & 0 & 0 \\
0 & 1.37 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

