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Solutions
Chapter 1

Chapter 2

2.1. (a) From the problem we have

PX(0) = PX(1) =
1
2

PY(0) = p, PY(1) = 1− p

Let Z = X⊕Y. Then,

PZ(0) = P(X⊕Y = 0) = P(X⊕Y = 0|Y = 0)PY(0) + P(X⊕Y = 0|Y = 1)PY(1)

= PX(0)PY(0) + PX(1)PY(1) =
1
2

p +
1
2
(1− p) =

1
2

PZ(1) = P(X⊕Y = 1) = P(X⊕Y = 1|Y = 0)PY(0) + P(X⊕Y = 1|Y = 1)PY(1)

= PX(1)PY(0) + PX(0)PY(1) =
1
2

p +
1
2
(1− p) =

1
2

where we see that Z is independent of p.

(b) Similar to (a) let

PX(i) =
1
M

, i = 0, 1, . . . , M− 1

PY(i) = pi, i = 0, 1, . . . , M− 1; where ∑
i

pi = 1

Then, with Z = ∑i X + Y mod M, we get

PZ(i) = P(X + Y ≡ i mod M) = ∑
j

P(X + Y ≡ i mod M|Y = j)PY(j)

= ∑
j

P(X = 〈i− j〉M)PY(j) = ∑
j

PX(〈i− j〉M)PY(j)

=
1
M ∑

j
PY(j) =

1
M

where 〈k〉M denotes the reminder when k is divided by M. This means that when a stochastic
variable X is added by a uniformly distributed variable the statistical properties of X are
“destroyed”.

2.2. Alternative 1. The Let A and B be the event that the first and the second card, respectively, is not a
heart. Then the the probability that the first card is not a heart is P(A) = 3/4. After that there are
51 cards left where 38 are not heart, hence P(B|A) = 38/51. The probability for not getting any
heart becomes

P(A, B) = P(B|A)P(A) =
38
51
· 3

4
=

19
34
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Alternative 2. Using combinatorial principles we use that the total number of cases of two cards
taken from 52 are (52

2 ). The number of pairs with no hearts are (39
2 ). Hence, the probability is

P(A, B) =
(39

2 )

(52
2 )

=
39!

2!37!
52!

2!50!
=

39 · 38
52 · 51

=
19
34

2.3. In this problem we have two alternative solutions. First define X as the number of heads for person
1 and Y as the number of heads for person 2. In the first alternative, consider the probability and
expand it into something we can derive,

P(X = Y) =
n

∑
k=0

P(X = Y|Y = k)P(Y = k)

=
n

∑
k=0

P(X = k)P(Y = k) =
n

∑
k=0

(
n
k

)(1
2

)n
(

n
k

)(1
2

)n

=
∑n

k=0 (
n
k)

2

22n =
∑n

k=0 (
n
k)

2(
∑n

k=0 (
n
k)
)2 =

(2n
n )

∑2n
k=0 (

2n
k )

where the last two equalities are alternative ways of writing, and we used that ∑k (
n
k) = 2n and

∑k (
n
k)

2 = (2n
n ).

In the second alternative, consider the total number of favourable cases related to the total number
of cases. There are 2n different binary vectors (results of n flips) resulting in a total of 2n2n = 22n

different outcomes of 2n tosses. Among those we need to find the total number of favourable
cases. If both persons have k heads they both have (n

k) different outcomes. So, in total we have

∑k (
n
k)

2 favourable outcomes. Therefore, we get the same result as above from

P(X = Y) =
nbr favourable cases

nbr cases
=

∑n
k=0 (

n
k)

2

22n

2.4. Let k be the number of 0s in the vector. Then we get the following table.

k (10
k ) P(x|k 0s) = pk(1− p)(10−k) P(k 0s) = (10

k )P(x|k 0s)
0 1 0.1073741824 0.1073741824
1 10 0.0268435456 0.2684354560
2 45 0.0067108864 0.3019898880
3 120 0.0016777216 0.2013265920
4 210 0.0004194304 0.0880803840
5 252 0.0001048576 0.0264241152
6 210 0.0000262144 0.0055050240
7 120 0.0000065536 0.0007864320
8 45 0.0000016384 0.0000737280
9 10 0.0000004096 0.0000040960
10 1 0.0000001024 0.0000001024

If we plot the probability for the distribution och 0s we get the picture below. We see here that the
most probable type of sequence is not the one with only ones. The other two pictures below shows
the same probability but with N = 100 and N = 1000. There we see even clearer that, with high
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probability, it is only a small group of sequences that will happen.

2.5. (a) Since the drawn ball is replaced the six results are independent, and all hace P(black) = p =
0.3 and P(white) = 1− p = 0.7. The resulting distribution is

P(k black) =
(

6
k

)
(1− p)6−k pk

which gives

k 0 1 2 3 4 5 6
P(k black) 0.1176 0.3025 0.3241 0.1852 0.0595 0.0102 0.0007

(b) Draw all balls from the urn and place them on a line. If there are k black balls among the six
first in the row, then there are 3− k among the last four. The first six balls can be drawn in
(6

k) different ways. For each of them the last four balls can be arranged in ( 4
3−k) ways. That

is, there are (6
k)(

4
3−k) alternatives to get k black balls in the six first draws. In total there are

(10
3 ) = 120 different ways to arrange the ten balls, so the probability of having k black balls in

the first six draws is

P(k black) =
(6

k)(
4

3−k)

120
which gives

k 0 1 2 3
(6

k)(
4

3−k) 4 36 60 20
P(k black) 0.0333 0.3 0.5 0.1667

2.6. Choose p1 = p2 = 1
2 and f (·) = log(·) to get

1
2

log x1 +
1
2

log x2 ≤ log
(

1
2

x1 +
1
2

x2

)
log(x1x2)

1
2 ≤ log

x1 + x2

2

(x1x2)
1
2 ≤ x1 + x2

2
where we in the last step used that the exponential function is an increasing function.

The proof can be extended to show that for positive numbers the geometric mean is upper bounded
by the arithmetic mean,(

N

∏
k=1

xk

) 1
N

≤ 1
N

N

∑
k=1

xk
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2.7. (a) Let y = ln n! = ∑n
k=1 ln k. However, by using trapetsoid approximation the itegral

∫ n

1
ln xdx ≈

n

∑
k=1
−1

2
ln 1− 1

2
log n =

n

∑
k=1
−1

2
ln n

The integral can also be derived by using ∂
∂x x ln x = ln x + 1,∫ n

1
ln xdx =

[
x ln x− x

]n

1
= n ln n− n + 1

Thus,

ln n!− 1
2

log n ≈ n ln n− n + 1

or, equivalently,

ln n! ≈ n ln n− n + 1 +
1
2

log n

By applying the exponential function on both sides the required result is obtained.

(b) As n tends to infinity

lim
n→∞

n!

e
√

n
(

n
e

)n = lim
n→∞

1
e

n!en

nn√n
=

√
2π

e

Hence, the factor e in the result should be replaced with
√

2π to get

n! ≈
√

2πn
(n

e

)n

which achievesd equality in thelimit as n→ ∞. The error made in (a) is correction factor
√

2π

e
≈ 0.92

So, the error is about 10%. For large n this is often not severe. For example, the approxima-
tions for 50! becomes 3.3 · 1064 or 3.0 · 1064, and 100! becomes 1.0 · 10158 or 9.4 · 10157.

Chapter 3

3.1. Consider the function f (x) = x− 1− logb x. For small x it will be dominated by − logb x and for
large x by x. So in both cases it will tend to infinity. Furthermore, for x = 1 the function will be
f (1) = 0. The derivative of f (x) in x = 1 is

∂

∂x
f (x)

∣∣∣
x=1

= 1− 1
x ln b

∣∣∣
x=1

= 1− 1
ln b


< 0, b < e
= 0, b = e
> 0, b > e

So, when b = e there is a minimum at x = 1, and since it is a convex function the inequality is true.
On the other hand, for b < e the derivative is negative and the function must be below zero just
after x = 1, and for b > e the derivative is positive and the function must be below zero just before
x = 1.
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3.2. According to the IT-inequality

ln x ≤ x− 1, x ≥ 0

with equality for x = 1. Since 1
x is positive if and only if x is positive we can rewrite it as

ln
1
x
≤ 1

x
− 1

with equality when 1
x = 1, or, equivalently when x = 1. Changing sign on both sides gives the

desired inequality.

3.3. The possible outcomes of X and Y are given in the table below:

X 1 2 3 4 5 6
Y O E O E O E

(a) I(X = x; Y = y) = log
pX|Y(x|y)

pX(x)

I(X = 2; Y = Even) = log
pX|Y(2|Even)

pX(2)
= log

1
3
1
6
= 1

I(X = 3; Y = Even) = log 0
1
6
= −∞

I(X = 2 or X = 3; Y = Even) = log
1
3
2
6
= 0

(b) I(X = 4) = − log pX(4) = − log 1
6 = log 6

I(Y = 0) = − log 1
2 = log 2 = 1

(c) H(X) = −∑6
i=1 pX(xi) log pX(xi) = −∑6

i=1
1
6 log 1

6 = −6( 1
6 log 1

6 ) = log 6
H(X) = H( 1

2 , 1
2 ) = log 2 = 1

(d) H(X|Y) = 1
2 H(X|Y = Even) + 1

2 H(X|Y = Odd) = 1
2 log 3 + 1

2 log 3 = log 3
H(Y|X) = 1

6 H(Y|X = 1) + 1
6 H(Y|X = 2) + ... + 1

6 H(Y|X = 6) = 0 + 0 + ... + 0 = 0
H(X, Y) = H(X) + H(Y|X) = log 6

(e) I(X; Y) = H(Y)− H(Y|X) = H(Y) = 1

3.4. (a) The probability function for the stochastic variable Y is:

y 2 3 4 5 6 7 8 9 10 11 12
p(y) 1

36
2

36
3

36
4

36
5
36

6
36

5
36

4
36

3
36

2
36

1
36

(b) H(X1) = H( 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 ) = log 6

H(Y) = H( 1
36 , 1

36 , 2
36 , 2

36 , 3
36 , 3

36 , 4
36 , 4

36 , 5
36 , 5

36 , 6
36 ) ≈ 3, 2744

(c) I(Y; X1) = H(Y)− H(Y|X1) = H(Y)− H(X2) ≈ 3, 2744− log 6 ≈ 0, 6894

3.5. (a) X P(X)

0 7
12

1 5
12

Y P(Y)
a 1

3
b 1

6
c 1

2

Y
P(X|Y) a b c

X
0 1

4 1 2
3

1 3
4 0 1

3

Y
P(Y|X) a b c

X
0 1

7
2
7

4
7

1 3
5 0 2

5
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(b) H(X) ≈ 0.9799 and H(Y) ≈ 1.4591

(c) H(X|Y) ≈ 0.7296 and H(Y|X) ≈ 1.2089

(d) H(X, Y) ≈ 2.1887

(e) I(X; Y) ≈ 0.2503

3.6. (a) The probability functions are:

P(X)

X

A 1
12 + 1

6 = 1
4

B 5
45 + 9

45 = 14
45

C 1
18 + 1

4 + 2
15 = 79

180

P(Y)

Y

a 1
12 + 1

18 = 5
36

b 1
6 + 1

9 + 1
4 = 19

36

c 1
5 + 2

15 = 1
3

Y
P(X|Y) a b c

X

A 3
5

6
19 0

B 0 4
19

3
5

C 2
5

9
19

2
5

Y
P(Y|X) a b c

X

A 1
3

2
3 0

B 0 5
14

9
14

C 10
79

45
79

24
79

(b) H(X) = H( 1
4 , 14

45 , 79
180 ) ≈ 1, 5455

H(Y) = H( 1
3 , 5

36 , 19
36 ) ≈ 1, 4105

(c) H(X|Y) = ∑3
i=1 P(Y = yi)H(X|Y = yi) ≈ 1, 2549

H(Y|X) = ∑3
i=1 P(X = xi)H(Y|X = xi) ≈ 1, 1199

(d) H(X, Y) = H( 1
12 , 1

6 , 1
9 , 1

5 , 1
18 , 1

4 , 2
15 ) ≈ 2, 6654

(e) I(X; Y) = H(X) + H(Y)− H(X, Y) ≈ 1, 5455 + 1, 4105− 2, 6654 ≈ 0, 2906

3.7. Let X be the choice of coin where P(fair) = P(counterfeit) = 1
2 , and let Y be the number heads in

two flips. The probabilities involved can be described as in Figure 1.

X

PX

1
2

1
2

Fair

Counterfeit

PY|X

1/4

1/2

1/4

1

PY

1
8

1
4

5
8

0

1

2

Y

Figure 1: Probabilities or two flips with unknown coin.
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Hence,

H(Y) = H(
1
8

,
1
4

,
5
8
) =

11
4
− 5

8
log 5

H(Y|X) = H(Y|X = fair)P(X = fair) + H(Y|X = c.f.)P(X = c.f.)

=
1
2

H(
1
4

,
1
2

,
1
4
) +

1
2

H(0, 0, 1) =
3
4

and we conclude that

I(X; Y) = H(Y)− H(Y|X) =
11
4
− 5

8
log 5− 3

4
= 2− 5

8
log 5

3.8. (a) H(X) = H( 10
18 , 5

18 , 3
18 ) ≈ 1.4153 bit

(b) H(Y|X) = H(Y|X = b)P(X = b) + H(Y|X = r)P(X = r) + H(Y|X = g)P(X = g)

= H( 9
17 , 5

17 , 3
17 )

10
18 + H( 10

17 , 4
17 , 3

17 )
5

18 + H( 10
17 , 5

17 , 2
17 )

3
18 ≈ 1.4100 bit

(c) If X is not known the probabilities of Y are based on the original set of outcomes, i.e. the same
as for X. To see this first derive p(x, y) = p(x)p(y|x) in the table below

Y
p(x, y) b r g

b 10
18

9
17

10
18

5
17

10
18

3
17

X r 5
18

10
17

5
18

4
17

5
18

3
17

g 3
18

10
17

3
18

5
17

3
18

2
17

To get the probabilities of Y use P(Y = c) = ∑x P(X = x, Y = c), i.e. sum vertically in the
table. Similarly, if the table is summed horisontally we get P(X). Both variants give the same
results,

P(X) = P(Y) = ( 10
18 , 5

18 , 3
18 )

In other words,

H(Y) = H( 10
18 , 5

18 , 3
18 ) ≈ 1.4153 bit

(d) I(X; Y) = H(Y)− H(Y|X) = 0.0052 bit

Naturally, it can also be derived as I(X; Y) = H(X)− H(X|Y) where P(X|Y) is derived from
the joint distruibution above. Then, in this case, H(X|Y) = H(Y|X) and the result is the same.

3.9. (a) Fair dice:
HF(X) = H( 1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6 ) = −6 1

6 log 1
6 = log 6 ≈ 2, 585

Manipulated dice:
HM(X) = H( 1

14 , 1
7 , 1

7 , 1
7 , 1

7 , 5
14 ) = −

4
7 log 1

7 + 1
14 log 14 + 5

14 log 14 + 5
14 log 5 ≈ 2, 41

(b) D(p||q) = ∑x p(x) log p(x)
q(x) = 1

6 log 7
3 + 4

6 log 7
6 + 1

6 log 7
15 ≈ 0, 169

(c) D(q||p) = ∑x q(x) log q(x)
p(x) =

1
14 log 3

7 + 4
7 log 6

7 + 5
14 log 15

7 ≈ 0, 178
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3.10. (a) PX(n) = P(tail)n−1P(tail) =
(

1
2

)n−1(
1
2

)
=
( 1

2

)n

(b) E[X] =
∞

∑
n=1

n
(1

2

)n
=

1
2

∞

∑
n=0

n
(1

2

)n−1
=

1
2

(1− 1
2 )

2
= 2

(c) H(X) = −
∞

∑
n=1

PX(n) log PX(n) = −
∞

∑
n=1

(1
2

)n
log
(1

2

)n

= log 2
∞

∑
n=1

n
(1

2

)n
= E[X] = 2

(d) (a) PX(n) = pqn−1

(b) E[X] =
∞

∑
n=1

npqn−1 = p
∞

∑
n=0

nqn−1 =
p

(1− q)2 =
1
p

(c) H(X) = −
∞

∑
n=1

pqn−1 log pqn−1 = −
∞

∑
n=1

pqn−1 log p−
∞

∑
n=1

(n− 1)pqn−1 log q

= − log p
∞

∑
n=1

pqn−1 − q log q
∞

∑
n=0

npqn−1 = − log p− q log qE[X]

=
−p log p− q log q

p
=

h(p)
p

3.11. First use that the sum over all x and y equals 1,

∑
x,y

k22−(x+y) = k2 ∑
x

2−x ∑
y

2−y = k222 = 1⇒ k =
1
2

(a)
P(X < 4, Y < 4) =

3

∑
x=0

3

∑
y=0

1
4

2−(x+y) =
1
4

( 3

∑
x=0

2−x
)2

=
1
4

(
1−

( 1
2
)4

1− 1
2

)2

=
(15

16

)2

(b)
H(X, Y) = −∑

x,y

1
4

2−(x+y) log
1
4

2−(x+y) = −∑
x,y

1
4

2−(x+y)
(

log
1
4
− (x + y) log 2

)
= 2 + ∑

x,y
x

1
4

2−(x+y) + ∑
x,y

y
1
4

2−(x+y) = 2 + 2 ∑
x

x
1
2

2−x ∑
y

1
2

2−y

︸ ︷︷ ︸
=1

= 2 + 2 ∑
x

x
1
2

2−x

︸ ︷︷ ︸
=1

= 4

(c) To start with derive the marginals as

p(x) = ∑
y

1
4

2−(x+y) =
1
2

2−x ∑
y

1
2

2−y =
1
2

2−x

p(y) = · · · = 1
2

2−y

Since p(x)p(y) = 1
2 2−x 1

2 2−y =
( 1

2
)22−(x+y) = p(x, y) the variables X and Y are independent,

Thus,

H(X|Y) = H(X) = −∑
x

1
2

2−x log
1
2

2−x

= −∑
x

1
2

2−x
(

log
1
2
− x log 2

)
= ∑

x

1
2

2−x + ∑
x

x
1
2

2−x = 1 + 1 = 2
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3.12. With p(x, y) = p(x)p(y|x) we get

D
(

p(x, y)
∣∣∣∣q(x, y)

)
= ∑

x,y
p(x, y) log

p(x, y)
q(x, y)

= ∑
x,y

p(x, y) log
p(x)
q(x)

+ ∑
x,y

p(x, y) log
p(y|x)
q(y|x)

= ∑
x

p(x) log
p(x)
q(x)

+ ∑
x,y

p(x)p(y|x) log
p(y|x)
q(y|x)

= D
(

p(x)
∣∣∣∣q(x)

)
+ ∑

x

(
∑
y

p(y|x) log
p(y|x)
q(y|x)

)
p(x)

= D
(

p(x)
∣∣∣∣q(x)

)
+ ∑

x
D
(

p(y|x)
∣∣∣∣q(y|x))p(x)

which gives the first equality. The second is obtained similarly. If X and Y are independent we
have p(y|x) = p(y) and q(y|x) = q(y) which will give the third equality.

3.13. To simplify notations, we use the expected value,

H(p, q) = Ep
[
− log q(x)

]
= Ep

[
− log q(x) + log p(x)− log p(x)

]
= Ep

[
log

p(x)
q(x)

]
+ Ep

[
− log p(x)

]
= D

(
p(x)

∣∣∣∣q(x)
)
− Hp(X)

3.14. (a) Since α + β + γ = 1, we get β
1−α + γ

1−α = 1.

H(α, β, γ) = −α log α− β log β− γ log γ

= −α log α− (1− α) log(1− α) + (1− α) log(1− α)− β log β− γ log γ

= h(α) + (1− α)
(

log(1− α)− β

1− α
β log β− γ

1− α
log γ

)
= h(α) + (1− α)

(( β

1− α
+

γ

1− α

)
log(1− α)− β

1− α
β log β− γ

1− α
log γ

)
= h(α) + (1− α)

(
− β

1− α
log

β

1− α
− γ

1− α
log

γ

1− α

)
= h(α) + (1− α)h

( β

1− α

)
(b) Follow the same steps as i (a)

3.15. Let the outcome of X be W and B, for white and black respectively. Then the probabilities for X
conditioned on the urn, Y is as in the following table. Furthermore, since the choice of urn are
equally likely the joint probability is p(x, y) = 1

2 p(x|y).

p(x|y) W B
1 4/7 3/7
2 3/10 7/10

p(x, y) W B
1 2/7 3/14
2 3/20 7/20

(a) The distribution of X is given by P(X = W) = 1
2 ·

4
7 + 1

2 ·
3

10 = 61
140 , and the entropy H(X) =

h
( 61

140
)
= 0.988.
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(b) The mutual information can be derived as

I(X; Y) = H(X) + H(Y)− H(X, Y) = h
( 61

140
)
+ h
( 1

2
)
− H

( 2
7 , 3

14 , 3
20 , 7

20
)
= 0.0548

(c) By adding one more urn (Y = 3) we get the following tables (with p(x) = 1/3)

p(x|y) W B
1 4/7 3/7
2 3/10 7/10
3 1 0

p(x, y) W B
1 4/21 3/21
2 1/10 7/30
3 1/3 0

Hence, P(X = W) = 131
210 and P(X = B) = 79

210 , and H(X) = h
( 79

210
)
. The mutual information

is

I(X; Y) = H(X) + H(Y)− H(X, Y) = h
( 79

210
)
+ log 3− H

( 4
21 , 3

21 , 1
10 , 7

30 , 1
3
)
= 0.3331

3.16.

I(X; YZ) = H(X) + H(YZ)− H(XYZ)
= H(X) + H(Y) + H(Z|Y)− H(X)− H(Y|X)− H(Z|XY)
= H(Y)− H(Y|X) + H(Z|Y)− H(Z|XY) = I(X; Y) + I(Z; X|Y)

3.17. (a) The Jeffrey’s divergence is

DJ(p||q) = ∑
x

p(x) log
p(x)
q(x)

+ ∑
x

q(x) log
q(x)
p(x)

= ∑
x

p(x) log
p(x)
q(x)

− q(x) log
p(x)
q(x)

= ∑
x
(p(x)− q(x))

p(x)
q(x)

(b) The Jensen Shannon divergence is

DJS(p||q) = 1
2 ∑

x
p(x) log

p(x)
p(x)+q(x)

2

+
1
2 ∑

x
q(x) log

q(x)
p(x)+q(x)

2

=
1
2 ∑

x
p(x) log p(x)− 1

2 ∑
x

p(x) log
p(x) + q(x)

2

+
1
2 ∑

x
q(x) log q(x)− 1

2 ∑
x

q(x) log
p(x) + q(x)

2

= −1
2

H(p)− 1
2

H(q)−∑
x

p(x) + q(x)
2

log
p(x) + q(x)

2

= H
( p(x) + q(x)

2

)
− H(p)− H(q)

2

Since ∑x
p(x)+q(x)

2 = ∑x p(x)+∑x q(x)
2 = 1, the fraction p(x)+q(x)

2 is a distribution.

3.18. Use that the relative entropy is non-negative and the IT-inequality to get

0 ≤ D(p||q) = ∑
x

p(x) log
p(x)
q(x)

≤∑
x

p(x)
( p(x)

q(x)
− 1
)

log e

=
(
∑
x

p2(x)
q(x)

− 1
)

log e

10



This requires that
(
∑x

p2(x)
q(x) − 1

)
≥ 0 which gives the assumption. The equality is given by the

IT-inequality if and only if p(x)
q(x) = 1, or equivalently, if and only if p(x) = q(x).

3.19. Let C be a random variable specifying the cost for the icecream.

(a) It is well known that the uniform distribution, pi =
1
3 , maximises the entropy to H(C) = log 3.

The average cost is E[C] = 1
3 (2 + 3 + 4) = 3 e.

(b) With the knowledge of the average cost as E[C] = 2.5 eand that pi are probabilities, we can
set up the Lagrangian maximisation function

J = −∑
i

pi log pi + λ0

(
∑

i
pici − 2.5

)
+ λ0

(
∑

i
pi − 1

)
Setting the derivative equal to zero gives

∂

∂pj
J = − log pj −

1
ln 2

+ λ0cj + λ1 = 0

or,

pj = 2λ0cj+λ1− 1
ln 2 = 2λ0cj+µ

where µ = λ1 − 1
ln 2 . The condition that pi are probabilities gives

∑
i

pi = 2µ ∑
i

2λ0ci = 1 ⇒ 2µ =
1

∑i 2λ0ci

Hence, the probability can be written as

pj =
2λ0cj

∑i 2λ0ci

The condition on the average price gives then

∑
j

cj pj = ∑
j

cj
2λ0cj

∑i 2λ0ci
=

∑j cj2
λ0cj

∑i 2λ0ci
= 2.5

or,

∑
j

cj2
λ0cj = 2.5 ∑

i
2λ0ci

Written out, the equation becomes

(2− 2.5)
(
2λ0
)2

+ (3− 2.5)
(
2λ0
)3

+ (4− 2.5)
(
2λ0
)4

= 0

Rewritten it gives

1.5
(
2λ0
)2
((

2λ0
)2

+ 0.5
1.5 2λ0 − 0.5

1.5

)
which is solved by 2λ0 = − 1

6 + 1
6

√
13. Henve the probabilities are

p1 =
2λ02

2λ02 + 2λ03 + 2λ04 ≈ 0.6162

p2 =
2λ03

2λ02 + 2λ03 + 2λ04 ≈ 0.2676

p3 =
2λ04

2λ02 + 2λ03 + 2λ04 ≈ 0.1162

The resulting entropy is H(C) = 1.3002.
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3.20. (a) The transition matrix is

P =

3/4 1/4 0
0 1/2 1/2

1/4 0 3/4


The stationary distribution is found from

µP = µ

⇒


− 1

4 µ1 + 1
4 µ3 = 0

1
4 µ1 − 1

2 µ2 = 0
1
2 µ2 − 1

4 µ3 = 0

Together with ∑i µi = 1 we get µ1 = 2
5 , µ2 = 1

5 , µ3 = 2
5 .

(b) The entropy rate is

H∞(U) = ∑
i

µi H(Si) =
2
5

h
(1

4

)
+

1
5

h
(1

2

)
+

2
5

h
(1

4

)
=

4
5

(
2− 3

4
log 3

)
+

1
5
=

1
9
− 3

4
log 3 ≈ 0.8490

(c) H
(2

5
,

1
5

,
2
5

)
= −2

5
log

2
5
− 1

5
log

1
5
− 2

5
log

2
5
= log 5− 4

5
≈ 1.5219

That is, we gain in uncertainty if we take into consideration the memory of the source.

3.21. (a) The travel route follows a Markov chain according to the probability matrix

Π =


1
3

1
3

1
3 0

1
3 0 1

3
1
3

1
2

1
2 0 0

0 1 0 0


Let µ =

(
µ0 µ1 µ2 µ3

)
be the stationary distribution. Then, the equation system µΠ = µ

together with the condition ∑i µi = 1 gives the solution

µ =
( 1

3
1
3

2
9

1
9

)
which is the distribution of the islands.

(b) The minimum number of bits per code symbol is entropy rate,

H∞ = 1
3 log 3 + 1

3 log 3 + 2
9 log 2 + 1

9 log 1 = 2
9 + 2

3 log 3

3.22. (a) Let the state of the Markov process be the step on ladder. Then the (infinite) state transition
graph for the process is

s0 s1 s2 s3 sn sn+1· · · · · ·
p p p p p p p

1− p

12



This gives the transition matrix

P =


1− p p 0 0 0 · · ·
1− p 0 p 0 0 · · ·
1− p 0 0 p 0 · · ·

...
. . . . . .


(b) Letting S denote the state and S+ the state at the next time instant. At each state the entropy

H(S+|S) = h(p). With π = π0, π1, π2, . . ., denoting the steady state distribution, the entropy
rate is

H∞(S) = ∑
S

H(S+|S)P(S) =
∞

∑
i=0

h(p)πi = h(p)

(c) In this problem we need the staeady state distribution π. From (a) we get that πn = πn−1 p =

πn−2 p2 = π0 pn for n = 0, 1, 2, . . .. With 1 = ∑i πi = π0 ∑i pi = π0
1

1−p we conclude πn =

(1− p)pn. The uncertainty that the man is on the ground is then

H(S = 0) = h(p)

To get the uncertainty of the step when the man is not on the ground we first need the cor-
responding probability as νn = πn

1−π0
= (1− p)pn−1 for n = 1, 2, . . .. Hence the uncertainty

is

H(N) = −
∞

∑
i=1

(1− p)pi−1 log(1− p)pi−1 = −
∞

∑
j=0

(1− p)pj log((1− p)pj)

= −(1− p) log(1− p)
∞

∑
j=0

pj − p(1− p) log p
∞

∑
j=0

jpj−1

= − log(1− p)− p
1− p

log p =
h(p)
1− p

3.23. (a) With µ = (µ2, µ4, µ6, µ8) and

P =


0 1/2 1/2 0

1/2 0 0 1/2
1/2 0 0 1/2

0 1/2 1/2 0


the steady stat solution to µP = µ gives µ = ( 1

4 , 1
4 , 1

4 , 1
4 ). Hence, the entropy rate becomes

H∞(X) = ∑
i Even

µi H(Si) = ∑
i Even

1
4

h
(1

2
)
= 1

(b) With µ = (µ1, µ3, µ5, µ7, µ9) and

P =


0 0 1/2 0 1/2
0 0 1/2 1/2 0

1/4 1/4 0 1/4 1/4
0 1/2 1/2 0 0

1/2 0 1/2 0 0
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the steady stat solution to µP = µ gives µ = ( 1
6 , 1

6 , 1
3 , 1

6 , 1
6 ). Hence, the entropy rate becomes

H∞(X) = ∑
i Odd

µi H(X2|X1 = i) = 4
1
6

h
(1

2

)
+

1
3

H
(1

4
,

1
4

,
1
4

,
1
4

)
=

4
6
+

1
3

log 4 =
4
3

Alternatively, one can define a weighted graph with weights according to the matrix

[
Wij
]
=


0 0 1 0 1
0 0 1 1 0
1 1 0 1 1
0 1 1 0 0
1 0 1 0 0


Then, we know that the steady state distribution is

µ =
[ Wi

2W

]
=
( 2

12
2

12
4

12
2

12
2

12

)
=
( 1

6
1
6

1
3

1
6

1
6

)
and the entropy rate is

H∞(X) = log 12− H
(1

6
,

1
6

,
1
3

,
1
6

,
1
6

)
= log 3 + 2− 4

1
6

log 6− 1
3

log 3 =
4
3

3.24. (a) Let the probability for stat ei be πi =
Ni
N , ∀i. Then the probability for the next state to be j is

P(S+ = j) =
(
π1 . . . πW

) p1j
...

pWj

 = ∑
i

πi pij

= ∑
i

kij

Ni

Ni
N

= ∑
i

kij

N
= ∑

i

k ji

N
=

Nj

N
= πj

which shows that πi is the stationary distribution. In the third last equality it is used that the
branches are undirected and that kij = k ji.

(b) The entropy rate is

H∞(S) = ∑
i

πi H(S+|S = i) = ∑
i

πi log Ni = ∑
i

Ni
N

log Ni

= ∑
i

Ni
N

log
Ni
N

+ ∑
i

Ni
N

log N = log N + ∑
i

πi log πi = log N − H(π)

3.25. (a) –

(b) –

(c) –

(d) –

Chapter 4

4.1. (a) Yes

(b) Yes

14



(c) No

4.2. (a) Start from the root and expand the tree until all the codewords are reached.

(b) H(X) = H( 1
5 , 1

5 , 1
5 , 1

5 , 1
10 , 1

10 ) = 2, 5219
E(L) = 1

5 + 3
5 + 3

5 + 3
5 + 4

10 + 4
10 = 2, 8

(c) Yes, since H(X) ≤ E
[
L
]
≤ H(X) + 1.

(d) Begin with the two least probable nodes and move towards the root of the tree in order to
find the optimal code (Huffman code). One such code is 11, 101, 100, 01, 001, 000 where the
codeword 11 corresponds to the random variable x1 and 000 corresponds to x6. Now use the
path length lemma to obtain E(L) = 1 + 0, 6 + 0, 4 + 0, 2 + 0, 4 = 2, 6. This is clearly less than
2,8 so the code is not optimal!

4.3. (a) According to Kraft’s inequality we get:
2−1 + 2−2 + 2−3 + 2−4 + 2−5 = 1

2 + 1
4 + 1

8 + 1
16 + 1

32 = 31
32 < 1

The code evidently exist and one example is 0, 10, 110, 1110, 11110.

(b) 2−2 + 2−2 + 2−3 + 2−3 + 2−4 + 2−4 + 2−5 + 2−5 = 15
16 < 1

One example is 00, 01, 100, 101, 1100, 1101, 11100, 11101.

(c) 2−2 + 2−2 + 2−2 + 2−3 + 2−4 + 2−4 + 2−4 + 2−5 = 35
32 > 1

The code doesn’t exist!

(d) 2−2 + 2−3 + 2−3 + 2−3 + 2−4 + 2−5 + 2−5 + 2−5 = 25
32 < 1

The set 00, 010, 011, 100, 1010, 10110, 10111, 11000 contains the codewords.

4.4. i For a tree with one leaf (i.e. only the root) the statement is true.

ii Assume that the statement is true for a tree with n − 1 leaves, i.e. n − 1 leaves gives n − 2
inner nodes. In a tree with n leaves consider two siblings. Their parent node is an inner node
in the tree with n leaves, but it can also be viewed as a leaf in a tree with n− 1 leaves. Thus,
by expanding one leaf in a tree with n− 1 leaves there is one new inner new and one extra
leaf, and the resulting tree has n leaves and n− 2 + 1 = n− 1 inner nodes.

4.5. Let the ith codeword length be li = log 1
q(xi)

. The average codeword length becomes

Lq = ∑
i

p(xi) log
1

q(xi)
= ∑

i
p(xi)

(
log

1
q(xi)

+ log p(xi)− log p(xi)
)

= ∑
i

p(xi) log
p(xi)

q(xi)
−∑

i
p(xi) log p(xi) = D(p||q) + Lp

where Lp is the optimal codeword length.

The mutual information is

I(X; Y) = D(p(x, y)||p(x)p(y))

This can be interpreted as follows. Consider two parallel sequences x and y. Let Lx = Ep(x)[log 1
p(x) ]

and Ly = Ep(y)[log 1
p(y) ] be the average codeword lengths when encoded separately. This should

15



be compared with the case when the sequences are vied as one sequence of pairs of symbols, en-
coded with the joint codeword length Lx,y = Ep(x,y)[log 1

p(x,y) ]. Consider the sum of the sum of the
individual codeword lengths to get

Lx + Ly = ∑
x

p(x) log
1

p(x)
+ ∑

y
p(y) log

1
p(y)

= ∑
x,y

p(x, y) log
1

p(x)
+ ∑

x,y
p(x, y) log

1
p(y)

= ∑
x,y

p(x, y) log
1

p(x)p(y)
= ∑

x,y
p(x, y) log

p(x, y)
p(x)p(y)

+ ∑
x,y

p(x, y) log
1

p(x, y)

= D
(

p(x, y)
∣∣∣∣∣∣p(x)p(y)

)
+ Lx,y = Lx,y + I(X; Y)

This shows that the mutual information is the gain, in bits per symbol, we can make from consid-
ering pairs of symbols instead of assuming they are independent.

For example, if x and y are binary sequences where xi = yi, it is enough to encode one of the
sequences. Then X and Y are equally distributed, p(x) = p(y), and we get

I(X; Y) = ∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
= ∑

x,y
p(x|y)p(y) log

p(x|y)p(y)
p(y)2

= ∑
x

p(y) log
1

p(y)
= Ly

where, in the second last equality, we used that p(x|y) = 1 if x = y and p(x|y) = 0 if x 6= y. The
above derivation tells that we can gain the same amount of bits that is needed to encode sequence
y.

4.6. The optimal code is a Huffman code and one such example is 01, 11, 10, 001, 0001, 00001, 00000
where the codeword 01 corresponds to the random variable x1 and 00000 corresponds to x7.

4.7. For the given code the probabilities and lengths of codewords is given by

x p(x) L(x)
000 27/125 1
001 18/125 3
010 18/125 3
011 12/125 5

x p(x) L(x)
100 18/125 3
101 12/125 5
110 12/125 5
111 8/125 5

Calculating the average codeword length gives E[L] ≈ 3.27. Since it is more than the uncoded case
the code is obviously not optimal. An optimal code can be constructed as a Huffman code. A tree
is given below (labeled with the numerator of the probabilities):
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000 (27)

001 (18)

010 (18)

011 (12)

100 (18)

101 (12)

110 (12)

111 (8)20

24

36

38

51

74

125

The code table becomes

x yH
000 00
001 100
010 101
011 010

x yH
100 110
101 011
110 1110
111 1111

The average codeword length becomes E[LH ] ≈ 2.94.

4.8. In the following tree the Huffman code of the English alphabet letters are constructed, and in the
table below it is summarised as a code (reading the tree with 0 up and 1 down along the branches).

A(73)

B(9)

C(30)

D(44)

E(130)

F(28)

G(16)

H(35)

I(74)

J(2)

K(3)

L(35)

M(25)

N(78)

O(74)

P(27)

Q(3)

R(77)

S(63)

T(93)

U(27)

V(13)

W(16)

X(5)

Y(19)

Z(1)

3
68

14

30

22

35
47

54

58

65

70

91

112

128

143

148

155

184

240

273

303

424

576

1000
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A 1101
B 010000
C 00111
D 0101
E 111

F 00110
G 000010
H 11000
I 1001
J 000000001

K 00000010
L 11001
M 01001
N 1010
O 1000

P 00100
Q 00000011
R 1011
S 0001
T 011

U 00101
V 010001
W 000001
X 00000001
Y 000011
Z 000000000

The average codeword length becomes (from the path length lemma)

E
[
L
]
= 1000+424+240+128+65+30+14+8+3+6+35+112+54+58+184+91+47+22+576+303+148+155+273+143+70

1000

≈ 4.189bit/letter

If all letters would have the same length it would require dlog 26e ≈ 5bit/letter. The entropy of
the letters is

H( 73
1000 , . . . , 1

1000 ) ≈ 4.162bit/letter

From the derivation we see that the Huffman code in this case is very close to the optimum com-
pression, and that by using the code we gain approximately 0.8 bit per encoded letter compared
to the case with equal length codewords.

4.9. (a) For the binary case an optimal code is given by a binary tree of depth 1, i.e.

X 0 1
Y 0 1

which gives average length L1 = 1.

(b) For vectors of length 2, 3 and 4 the Huffman codes and average length per symbol is given by

X2 P Y
00 0.01 111
01 0.09 110
10 0.09 10
11 0.81 0

1
2 L2 = 1.2

2 = 0.6

X3 P Y
000 0.001 11111
001 0.009 11110
010 0.009 11101
011 0.081 110
100 0.009 11100
101 0.081 101
110 0.081 100
111 0.729 0

1
3 L3 = 1.589

3 = 0.5297

X4 P Y
0000 0.0001 1111111111
0001 0.0009 1111111110
0010 0.0009 111111110
0011 0.0081 1111110
0100 0.0009 111111101
0101 0.0081 111110
0110 0.0081 1111011
0111 0.0729 110
1000 0.0009 111111100
1001 0.0081 1111010
1010 0.0081 1111001
1011 0.0729 101
1100 0.0081 1111000
1101 0.0729 100
1110 0.0729 1110
1111 0.6561 0

1
4 L4 = 1.9702

4 = 0.4925

(c) The entropy is H(X) = h(0.1) = 0.469. Since the variables in the vectors are i.i.d. this is the
optimal average length per symbol. In the above it is seen that already with a vector of length
4 the length is not so far away from this optima.
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4.10. (a) For P(n) to be a probability function it must be positive and sum to 1. Here, it is clear that
P(n) ≥ 0 for all n, and since 1/k < 1 the sum becomes

∞

∑
n=1

(k− 1)k−1 = (k− 1)
∞

∑
n=1

( 1
k
)
n = (k− 1)

1
k

1− 1
k
=

k− 1
k− 1

= 1

Hence, it is a probability function.

(b) With k = 2 we get P(n) =
( 1

2
)n. By considering the optimal codeword lengths

l(opt)
n = − log P(n) = − log

( 1
2
)n

= n

we see that this is an integer for each number n. It is also the same as the codeword lengths
for the unary code, and we conclude that it is optimal for this case. The entropy is in that case
equal to the average codeword length

H(X) = L =
∞

∑
n=1

n
( 1

2
)n

= 1
2

∞

∑
n=1

n
( 1

2
)n−1

=
1
2(

1− 1
2
)2 = 2

(c) For a general k the optimal codeword length l(opt)
n = − log P(n) is typically not integers and

can therefore not be used to construct an optimal code. It also means that the average length
of an optimal code will not equal the entropy. Our next attemmpt is then to show that the
code satisfies Huffman’s algorithm, which will produce an optimal code. Then write the code
in a tree,

p(1)
p(2)

· · · · · ·
p(m)

p(m + 1)

· · ·

0

1
0

1
0

1
0

1

Consider then the sub-tree stemming from level m (the tree containing the leaves p(m + 1),
p(m + 2), etc. The root node of this tree has the probability

r(m) =
∞

∑
n=m+1

(k− 1)
( 1

k
)n

= (k− 1)
( 1

k
)m+1

∞

∑
l=0

( 1
k
)l

= (k− 1)
( 1

k
)m+1 1

1− 1
k
=
( 1

k
)m ≤ (k− 1)

( 1
k
)m

= p(m)

Hence, among the nodes p(1), p(2), . . ., p(m) and r(m), the two least probable are p(m) and
r(m). Merging those two nodes in a tree will give one step further up in the tree. After
m − 2 more similar merges, according to the Huffman algorithm, the unary code has been
constructed. Hence, for p(n) as in the problem, the unary code is a Huffman code and, hence,
it is optimal. The corresponding codeword length given by

L =
∞

∑
n=1

n(k− 1)
( 1

k
)n

= (k− 1)
( 1

k
) ∞

∑
n=1

n
( 1

k
)n−1

= (k− 1)
1
k(

1− 1
k
)2 =

k
k− 1

4.11. For simpicity, the common denominator in the probabilities, for each sub-problem, is dropped and
the numerator is used as weight in the algorithm.
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(a) In the first example the weights for the outcomes are w(x1) = 4, w(x2) = 3, w(x3) = 2 and
w(x4) = 1. The first split sepoarates {x1} in one part and {x2, x3, x4} in the other. The first set
is marked with 0 and the second with 1. The second set is split again into {x2} and {x3, x4}.
Finally the last part is split into {x3} and {x4}. Since al sets now contain only one outcome
each there is no more splitting. By marking the subsets in each split by 0 and 1, a code is
obtained. Below, to the left, the propcedure is shown. To the right the corresponding code
tree is shown.

X : x1 x2 x3 x4
w : 4 3 2 1

0 1
0 1

0 1

10
0

4
x1

1
6

0
3

x2
1 3

0
2

x3
1

1
x4

Since the merging of the leafs in the tree follows the Huffman procedure it is a Huffman code,
and hence optimal.

(b) In the second example the weights are w(x1, x2, x3, x4, x5, x6) = (6, 5, 4, 3, 2, 1). Following the
same procedure as in (a), we get

X : x1 x2 x3 x4 x5 x6
w : 6 5 4 3 2 1

0 1
0 1

0 1 0 1
0 1

21
0

11

1
10

0
6

x1
1 5

x2

0
4

x3
1 6

0
3

x4
1 3

0
2

x5
1

1
x6

When constructing a Huffman code, first thre leaves x5 and x6 are merged, then {x5x6} and
x4 are merged. After this the nodes in the algorithm are (x1, x2, x3, {x4x5x6}) with weights
(6, 5, 4, 6). So in the next step in the Huffman procedure the nodes x2 and x3 are merged. this
is not the case in the tree above, and hence the code is not a Huffman code. Continuing the
Huffman procedude results in the code tabulated below.

X w Y
x1 6 10
x2 5 01
x3 4 00
x4 3 110
x5 2 1110
x6 1 1111

The average codeword length for the Huffman code is 51/21, and according to the path length
lemma the codeword length for the Fano code is LF = 21+11+10+6+3

21 = 51
21 . Hence the code is

optimal.
(c) Following the same structure for the third code gives the following.

X : x1 x2 x3 x4 x5
w : 15 7 7 7 7

0 1
0 1 0 1

0 1

43
0

22

1
21

0
15

x1
1

7
x2

0
7

x3
1

14
0

7
x4

1
7

x5
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The average codeword length is LF = 43+22+21+14
43 = 100

43 . When constructing a Huffman code
the nodes x4 and x5 are merged in the first step. In the second step x2 and x3 are merged,
which is not the case in the tree for the Fano code. Hence the obtained code is not a Huffman
code. In the following table a Huffman code is shown.

X w Y
x1 15 0
x2 7 100
x3 7 101
x4 7 110
x5 7 111

The average codeword length is LH = 99
43 . Hence, the Fano code is neither a Huffman code

nor optimal.

4.12. –

Chapter 5

5.1. The decoding procedure can be viewed in the following table. The colon in the B-buffer denotes
the stop of the encoded letters for that codeword.

S-buffer B-buffer Codeword
[IF IF =] [ T:HEN T] (2,1,T)
[ IF = T] [H:EN THE] (0,0,H)
[IF = TH] [E:N THEN] (0,0,E)
[F = THE] [N: THEN ] (0,0,N)
[ = THEN] [ THEN TH:] (5,7,H)
[THEN TH] [EN =: EL] (5,3,=)
[ THEN =] [ E:LSE E] (2,1,E)
[HEN = E] [L:SE ELS] (0,0,L)
[EN = EL] [S:E ELSE] (0,0,S)
[N = ELS] [E :ELSE ] (3,1, )
[= ELSE ] [ELSE ELS:] (5,7,S)
[LSE ELS] [E =: IF ] (5,2,=)
[ ELSE =] [ I:F ] (2,1,I)
[LSE = I] [F:; ] (0,0,F)
[SE = IF] [;: ] (0,0,;)

There are 15 codewords. In the uncoded text there are 45 letters, which corresponds to 360 bits. In
the coded sequence we first have the buffer of 7 letters, which gives 56 bits. Then, each codeword
requires 3 + 3 + 8 = 14 bits. With 15 codewords we get 7 · 8 + 15(3 + 3 + 8) = 266 bits. The
compression rate becomes R = 266

360 = 0.7389.

5.2. Encoding according to
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S buffer B buffer Codeword
’I screem, you sc’ ’reem, we’ (12,6,’w’)
’m, you screem, w’ ’e all sc’ (6,1,’ ’)
’ you screem, we ’ ’all scre’ (7,1,’l’)
’ou screem, we al’ ’l scream’ (1,1,’ ’)
’ screem, we all ’ ’scream f’ (15,6,’ ’)
’, we all scream ’ ’for icec’ (0,0,’f’)
’ we all scream f’ ’or icecr’ (0,0,’o’)
’we all scream fo’ ’r icecre’ (7,1,’ ’)
’ all scream for ’ ’icecream’ (0,0,’i’)
’all scream for i’ ’cecream.’ (11,1,’e’)
’l scream for ice’ ’cream.’ (13,5,’.’)

There are 11 codewords and an initialisation vector of 16 letters, giving 11(5+ 4+ 8) + 16 · 8 = 315
bits. (The codeword length can also be argued to be 4+ 3+ 8 = 15 bits, but according to the course
book it should be d16 + 1e+ d8 + 1e+ 8 = 5 + 4 + 8 = 17). The uncoded length is 49 · 8 = 392
bits. Then the compression ratio is R = 392/315 = 1.24.

5.3. The decoding is done in the following table.

Index Codeword Dictionary (text)
1 : (0, t) t
2 : (0, i) i
3 : (0, m) m
4 : (0, )
5 : (1, h) th
6 : (0, e) e
7 : (4, t) t
8 : (0, h) h
9 : (2, n) in

10 : (7, w) tw
11 : (9, ) in
12 : (1, i) ti
13 : (0, n) n
14 : (0, s) s
15 : (3, i) mi
16 : (5, .) th.

Hence, the text is “tim the thin twin tinsmith.”.

5.4. The decoding procedure can be viewed in the following table. The colon in the binary representa-
tion of the codeword shows where the index stops and the character code begins. This separator
is not necessary in the final code string.

22



Index Codeword Dictionary Binary
1 (0,I) [I] :01001001
2 (0,F) [F] 0:01000110
3 (0, ) [ ] 00:00100000
4 (1,F) [IF] 01:01000110
5 (3,=) [ =] 011:00111101
6 (3,T) [ T] 011:01010100
7 (0,H) [H] 000:01001000
8 (0,E) [E] 000:01000101
9 (0,N) [N] 0000:01001110
10 (6,H) [ TH] 0110:01001000
11 (8,N) [EN] 1000:01001110
12 (10,E) [ THE] 1010:01000101
13 (9, ) [N ] 1001:00100000
14 (0,=) [=] 0000:00111101
15 (3,E) [ E] 0011:01000101
16 (0,L) [L] 0000:01001100
17 (0,S) [S] 00000:01010011
18 (8, ) [E ] 01000:00100000
19 (8,L) [EL] 01000:01001100
20 (17,E) [SE] 10001:01000101
21 (15,L) [ EL] 01111:01001100
22 (20, ) [SE ] 10100:00100000
23 (14, ) [= ] 01110:00100000
24 (4,;) [IF;] 00100:00111011

In the uncoded text there are 45 letters, which corresponds to 360 bits. In the coded sequence there
are in total 1 + 2 · 2 + 4 · 3 + 8 · 4 + 8 · 5 = 89 bits for the indexes and 24 · 8 = 192 bits for the
characters of the codewords. In total the code sequence is 89 + 192 = 281 bits. The compression
rate becomes R = 281

360 = 0.7806.

5.5. (a)
S-buffer B-buffer Codeword
[Nat the ba] [t s:] (8,2,s)
[ the bat s] [w:at] (0,0,w)
[the bat sw] [at a:] (5,3,a)
[bat swat a] [t M:] (3,2,M)
[ swat at M] [att:] (4,2,t)
[at at Matt] [ t:h] (5,1,t)
[ at Matt t] [h:e ] (0,0,h)
[at Matt th] [e: g] (0,0,e)
[t Matt the] [ g:n] (4,1,g)
[Matt the g] [n:at] (0,0,n)
[att the gn] [at:] (10,1,t)

Text: 264 bits, Code: 234 bits, Rate:0.886364

(b)
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S-buffer B-buffer Codeword
[Nat the ba] [t :s] (0,8,2)
[t the bat ] [s:wa] (1,s)
[ the bat s] [w:at] (1,w)
[the bat sw] [at :] (0,5,3)
[ bat swat ] [at :] (0,3,3)
[t swat at ] [M:at] (1,M)
[ swat at M] [at:t] (0,4,2)
[wat at Mat] [t :t] (0,5,2)
[t at Matt ] [t:he] (0,2,1)
[ at Matt t] [h:e ] (1,h)
[at Matt th] [e: g] (1,e)
[t Matt the] [ :gn] (0,4,1)
[ Matt the ] [g:na] (1,g)
[Matt the g] [n:at] (1,n)
[att the gn] [at:] (0,10,2)

Text: 264 bits, Code: 199 bits, Rate:0.7538

(c)
Index Codeword Dictionary Binary
1 (0,N) [N] :01001110
2 (0,a) [a] 0:01100001
3 (0,t) [t] 00:01110100
4 (0, ) [ ] 00:00100000
5 (3,h) [th] 011:01101000
6 (0,e) [e] 000:01100101
7 (4,b) [ b] 100:01100010
8 (2,t) [at] 010:01110100
9 (4,s) [ s] 0100:01110011
10 (0,w) [w] 0000:01110111
11 (8, ) [at ] 1000:00100000
12 (11,M) [at M] 1011:01001101
13 (8,t) [att] 1000:01110100
14 (4,t) [ t] 0100:01110100
15 (0,h) [h] 0000:01101000
16 (6, ) [e ] 0110:00100000
17 (0,g) [g] 00000:01100111
18 (0,n) [n] 00000:01101110
19 (2,t) - 00010:01110100

Text: 264 bits, Code: 216 bits, Rate:0.8182

(d)
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Index Codeword Dictionary Binary
32 [ ]
77 [M]
78 [N]
97 [a]
98 [b]
101 [e]
103 [g]
104 [h]
110 [n]
115 [s]
116 [t]
119 [w]
256 78 [Na] 01001110
257 97 [at] 001100001
258 116 [t ] 001110100
259 32 [ t] 000100000
260 116 [th] 001110100
261 104 [he] 001101000
262 101 [e ] 001100101
263 32 [ b] 000100000
264 98 [ba] 001100010
265 257 [at ] 100000001
266 32 [ s] 000100000
267 115 [sw] 001110011
268 119 [wa] 001110111
269 265 [at a] 100001001
270 265 [at M] 100001001
271 77 [Ma] 001001101
272 257 [att] 100000001
273 258 [t t] 100000010
274 260 [the] 100000100
275 262 [e g] 100000110
276 103 [gn] 001100111
277 110 [na] 001101110
278 257 - 100000001

Text: 264 bits, Code: 206 bits, Rate:0.7803

5.6.

5.7. Encoding
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step lexicon prefix new symbol codeword
(pointer,new symbol) binary

0 ∅ ∅ T (0,’T’) ,01010100
1 T ∅ H (0,’H’) 0,01001000
2 H ∅ E (0,’E’) 00,01000101
3 E ∅ (0,’ ’) 00,00100000
4 ∅ F (0,’F’) 000,01000110
5 F ∅ R (0,’R’) 000,01010010
6 R ∅ I (0,’I’) 000,01001001
7 I E N (3,’N’) 011,01001110
8 EN ∅ D (0,’D’) 0000,01000100
9 D I (4,’I’) 0100,01001001

10 I ∅ N (0,’N’) 0000,01001110
11 N N (4,’N’) 0100,01001110
12 N E E (3,’E’) 0011,01000101
13 EE D (9,’ ’) 1001,00100000
14 D I S (7,’S’) 0111,01010011
15 IS T (4,’T’) 0100,01010100
16 T H E (2,’E’) 00010,01000101
17 HE F (4,’F’) 00100,01000110
18 F R I (6,’I’) 00110,01001001
19 RI EN D (8,’D’) 01000,01000100
20 END I N (10,’N’) 01010,01001110
21 IN D E (9,’E’) 01001,01000101
22 DE E D (3,’D’) 00011,01000100

The length of the code sequence is 268 bits. Assume that the source alphabet is ASCII, then the
source sequence is of length 312 bits.

There are only ten different symbols in the sequence, therefore we can use a 10 letter alphabet,
{T,H,E,-,F,R,I,N,D,S}. In that case we get 39 · 4 = 156 bits as the source sequence.

Chapter 6

6.1. Let X describe the source, i.e. PX(0) = p and PX(0) = q = 1− p.

(a) Since nq might not be an integer we round it to [nq]. Then we say that a sequence of length n
with a share of 1s equal to q has [nq] 1s. There are ( n

[nq]) such sequences.

(b) To represent the sequences in (a) we need blog ( n
[nq])c bits (we use the lower integer limit bc

to achieve an integer number). Hence, in total we need 1
n blog ( n

[nq])c bits/source bit.

(c) Use that (n
k) = n!

k!(n−k)! and n! ≈
√

2πn( n
e )

n in the following derivation (approximating nq
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and np as integers),

1
n

log
(

n
nq

)
=

1
n

log
n!

nq!np!
=

1
n

(
log n!− log nq!− log np!

)
≈ 1

n

(
log
√

2πn(
n
e
)n − log

√
2πnq(

nq
e
)nq
)
− log

√
2πnp(

np
e
)np
)

=
1
n

(1
2

log 2π +
1
2

log n + n log n− n log e

− 1
2

log 2π − 1
2

log nq− nq log nq + nq log e

− 1
2

log 2π − 1
2

log np− np log np + np log e
)

≈ 1
n

(
n log n− qn log qn− pn log pn

)
=

1
n

(
−qn log q− qp log p

)
= h(q) = h(p)

where ≈ denotes approximations for large n and we used 1
n log n→ 0, n→ ∞.

Notice, that this imply that for large n we get (n
k) = ( n

k
n n) ≈ 2nh( k

n )

6.2. The definition of jointly typical sequences can be rewritten as

2−n(H(X,Y)+ε) ≤ p(x, y) ≤ 2−n(H(X,Y)−ε)

and

2−n(H(Y)+ε) ≤ p(y) ≤ 2−n(H(Y)−ε)

Dividing these and using the chain rule concludes the proof.

6.3. A binary sequence x of length 100 with k 1s has the probability

P(x) =
(49

50

)100−k( 1
50

)k
=

49100−k

50100

(a) The most likely sequence is clearly the all-zero sequence with probability

P(00 . . . 0) =
(49

50

)100
≈ 0.1326

(b) By definition a sequence x is ε-typical if

2−n(H(X)+ε) ≤ P(x) ≤ 2−n(H(X)−ε)

or, equivalently,

−ε ≤ − 1
n

log P(x)− H(X) ≤ ε

Here,

H(X) = h(
1
50

) = − 1
50

log
1

50
− 49

50
log

49
50

= log 50− 49
50

log 49 = 1 + 2 log 5− 49
25

log 7
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and, for the all-zero sequence,

− 1
100

log P(00 . . . 0)) = − 1
100

log
(49

50

)100
= − log 49 + log 50 = 1 + 2 log 5− 2 log 7

Thus, we get

− 1
n

log P(x)− H(X) = 1 + 2 log 5− 2 log 7− 1− 2 log 5 +
49
25

log 7 = − 1
25

log 7 < −ε

and see that the all-zero sequence in not an ε-typical sequence.

(c) Consider again the condition for ε-typicality and derive

− 1
n

log P(x)− H(X) =
1

100
log

49100−k

50100 +
1

50
log

1
50

+
49
50

log
49
50

= log 50− 100− k
50

log 7− log 50 +
49
25

log 7 = −2− k
50

log 7

Hence, for ε-typical sequences

− 1
50

log 7 ≤ −2− k
50

log 7 ≤ 1
50

log 7

−1 ≤ k− 2 ≤ 1
1 ≤ k ≤ 3

So, the number of ε-typical sequences is(
100

1

)
+

(
100

2

)
+

(
100

3

)
= 166750

which should be compared with the total number of sequences 2100 ≈ 1.2677 · 1030.

6.4. Consider a sequence of n cuts and let x = x1x2 . . . xn be the the outcome where xi is the part saved
in cut i. If in k of the cuts we save the long part and in n− k the short part, the length becomes
Lk = ( 2

3 )
k( 1

3 )
(n−k) = 2k

3n . The probability for such a sequence is P(x) = ( 3
4 )

k( 1
4 )

(n−k) = 3k

4n . On
the other hand we know that the most probable sequences are the typical, represented by the set
Aε(X). Hence, if we consider a typical sequence we know that the probability is bounded by

2−n(H(X)+ε) ≤ P(x) ≤ 2−n(H(X)−ε)

To the first order of the exponent (assume ε very small), this gives that P(x) = 2−nH(X), where
H(X) = h( 1

4 ). Combining the two expressions for the probability gives

3k = 22n · 2−nh( 1
4 ) = 2n(2−h( 1

4 ))

or, equivalently,

k = n
2− h( 1

4 )

log 3
= n

2 + 1
4 log 1

4 + 3
4 log 1

4 + 3
4 log 3

log 3
= n

3
4

Going back to the remaining length we get

Lk =
2n 3

4

3n =
(2

3
4

3

)n

and we conclude that, in average, we keep 23/4

3 of the length at each cut.
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6.5. Since X and Z independent H(Y|X) = H(X + Z|X) = H(Z|X) = H(Z) = log 3. The capacity
becomes

C = max
p(x)

I(X; Y) = max
p(x)

H(Y)− log 3 = log 15− log 3 = log
15
3

= log 5

This is achieved for uniform Y which by symmetry is achieved for uniform X, i.e. p(xi) =
1

15 .

Alternatively the problem can be solved by noting that the channel is a strongly symmetric DMC
with 15 symbols and transmission probabilities p = ( 1

3 , 1
3 , 1

3 ). Hence,

C = log 15− H( 1
3 , 1

3 , 1
3 ) = log 15− log 3 = log 5

6.6. Assume that P(X = 1) = p and P(X = 0) = 1− p. Then{
P(Y = 1) = P(X = 1)P(Z = 1) = αp
P(Y = 0) = 1− P(Y = 1) = 1− αp

Then

I(X; Y) = H(Y)− H(Y|X) = h(αp)− ((1− p)h(1) + ph(α)) = h(αp)− ph(α)

Differentiating with respect to p gives us the maximising p̃ = 1

α(2
h(α)

α +1)
. The capacity is

C = h(α p̃)− p̃h(α) = · · · = log(2
h(α)

α + 1)− h(α)
α

6.7. (a) C = log 4− h( 1
2 ) = 2− 1 = 1

(b) C = log 4− H( 1
3 , 1

3 , 1
6 , 1

6 ) ≈ 0, 0817

(c) C = log 3− H( 1
2 , 1

3 , 1
6 ) ≈ 0, 126

6.8. By assuming that P(X = 0) = π and P(X = 1) = 1− π we get the following:

H(Y) = H(π(1− p− q) + (1− π)p, πq + (1− π)q, (1− π)(1− p− q) + πp)
= H(π − 2pπ − qπ + p, q, 1− p− q− π + 2pπ + qπ)

= h(q) + (1− q)H
(

π − 2pπ − qπ + p
(1− q)

,
1− p− q− π + 2pπ + qπ

(1− q)

)
≤ h(q) + (1− q)

with equality if π = 1
2 , where H( 1

2 , 1
2 ) = 1.

C = max
p(x)

I(X; Y) = max
p(x)

(H(Y)− H(Y|X)) = h(q) + (1− q)− H(p, q, 1− p− q)

= (1− q)
(

1− H
(

1− p− q
1− q

,
p

1− q

))
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6.9. Assume that P(X = 0) = 1− A and P(X = 1) = A. Then

H(Y) = H
(
(1− A) +

A
2

,
A
2

)
= H

(
1− A

2
,

A
2

)
= h(

A
2
)

H(Y|X) = P(X = 0)H(Y|X = 0) + P(X = 1)H(Y|X = 1) = Ah(
1
2
) = A

and we conclude

C = max
p(x)

{
h( A

2 )− A
}

Differentiation with respect to A gives the optimal Ã = 2
5 .

C = h( Ã
2 )− Ã ≈ 0, 322

6.10. By cascading two BSCs we get the following probabilities:

P(Z = 0|X = 0) = (1− p)2 + p2

P(Z = 1|X = 0) = p(1− p) + (1− p)p = 2p(1− p)
P(Z = 0|X = 1) = 2p(1− p)

P(Z = 1|X = 1) = (1− p)2 + p2

This channel can be seen as a new BSC with crossover probability ε = 2p(1− p). The capacity for
this channel becomes C = 1− h(ε) = 1− h(2p(1− p)).

6.11. (a) The channel is weakly symmetric, so we can directly state the capacity as

C = log 4− H( 1
2 , 1

4 , 1
4 , 0) = 2− 3

2 = 1
2

(b) By letting P(X = 0) = 1
6 and P(X = 1) = 5

6 , the probabilities for the received symbols are
P(A) = 1

12 , P(B) = 1
4 , P(C) = 1

4 and P(D) = 5
12 . An optimal compression code is given by

the following Huffman code.

Y Z
A 000
B 001
C 01
D 1

which gives the average length L = 1.917 bit. As a comparison the entropy is H( 1
12 , 1

4 , 1
4 , 5

12 ) =
1.825 bit.

6.12. The overall channel has the probabilities

P(Z = 0|X = 0) = (1− α)(1− β) P(Z = 1|X = 1) = (1− α)(1− β)

P(Z = ∆|X = 0) = (1− α)β + αβ = β P(Z = ∆|X = 0) = β

P(Z = 1|X = 0) = α(1− β) P(Z = 0|X = 1) = α(1− β)

Identifying with the channel model in Problem ?? with p = α(1 − β) and q = β, the capacity
follows from the solution.
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6.13. (a)
I(X; Y, Z) = H(Y, Z)− H(Y, Z|X)

= H(Y) + H(Z|Y)− H(Y|X)− H(Z|Y, X)

= H(Y)− H(Y|X) + H(Z)− H(Z|X)− H(Z) + H(Z|Y)
= I(X; Y) + I(X; Z)− I(Y; Z)

where in the third equality the terms H(Z)−H(Z) are added, and it is noted that H(Z|Y, X) =
H(Z|X) since the two channels work independently.

(b) Since X is binary with equal probabilities we get directly I(X; Y) = I(X; Z) = 1− h(p). It also
gives that p(y) = p(z) = 1/2, and, hence, I(Y; Z) = H(Y) + H(Z)− H(Y, Z) = 2− H(Y, Z).
Then, to get the first part of the problem,

I(X; Y, Z) = I(X; Y) + I(X; Z)− I(Y; Z)

= 2
(
1− h(p)

)
−
(
2− H(Y, Z)

)
= H(Y, Z)− 2h(p)

To get the distrubiution for (Y, Z) we follow the hint in the problem and derive p(y, z|x) =
p(y|x)p(z|x), which follows from that conditioned on X, Y and Z are independent. Since
p(x) = 1/2 the unconditional probability is p(y, z) = 1

2 (p(y, z|x = 0) + p(y, z|x = 1)). The
probability functions are listed in the following table

X Y Z p(y, z|x)
0 0 0 (1− p)2

0 0 1 p(1− p)
0 1 0 p(1− p)
0 1 1 p2

1 0 0 p2

1 0 1 p(1− p)
1 1 0 p(1− p)
1 1 1 (1− p)2

Y Z p(y, z)
0 0 1

2 (p2 + (1− p)2)
0 1 p(1− p)
1 0 p(1− p)
1 1 1

2 (p2 + (1− p)2)

Then,

H(Y, Z) = H
(

1
2
(
(1− p)2 + p2), 1

2
(
(1− p)2 + p2), p(1− p), p(1− p)

)
= −

(
(1− p)2 + p2) log

(1− p)2 + p2

2
− 2(1− p) log p(1− p)

Inserting in the above expression gives

I(X; Y, Z) = H(Y, Z)− 2h(p)

= p2 log
2

(1− p)2 + p2 + (1− p)2 log
2

(1− p)2 + p2

− 2p(1− p) log p− 2p(1− p) log(1− p) + 2p log p + 2(1− p) log(1− p)

= p2 log
2

(1− p)2 + p2 + (1− p)2 log
2

(1− p)2 + p2 + p2 log p + (1− p)2 log(1− p)

(a)
= p2 log

2p2

(1− p)2 + p2 + (1− p)2 log
2(1− p)2

(1− p)2 + p2

=
(

p2 + (1− p)2)+ p2 log
p2

(1− p)2 + p2 + (1− p)2 log
(1− p)2

(1− p)2 + p2

=
(

p2 + (1− p)2)(1 +
p2

p2 + (1− p)2 log
p2

(1− p)2 + p2 +
(1− p)2

p2 + (1− p)2 log
(1− p)2

(1− p)2 + p2

)
(b)
=
(

p2 + (1− p)2)(1− h
( p2

(1− p)2 + p2

))
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where (a) and (b) are the results to be shown.

The formula in (b) can be interpreted as follows. Viewed from the receiver (Y, Z) = (0, 1) or
(Y, Z) = (1, 0), which happens with probability 2p(1− p), the probability for X = 0 and X =
1 are both 1/2, so there is no information in this event. On the other hand, with probability

p2 + (1− p)2 the receiver gets (0, 0) or (1, 1), which gives the information 1− h
( p2

(1−p)2+p2

)
.

Here, p2

(1−p)2+p2 is P(Y 6= X, Z 6= X|Y = Z), that is, the probability that both Y and Z are
wrong if the receiver gets the same result from the two channels.

6.14. Denote P(X = 0) = p. Then the joint probability and the probability for Y is given by

Y
P(X|Y) 0 1

X
0 p 0

1 (1− p)α ((1− p)(1− α))

P(Y) : p + (1− p)α (1− p)(1− α)

= 1− (1− p)(1− α)

The conditional and unconditional entropies of Y are then given by

H(Y|X) = H(Y|X = 0)p + H(Y|X = 1)(1− p) = (1− p)h(α)

H(Y) = h
(
(1− p)(1− α)

)
By using d

dx h(x) = log 1−x
x the derivative of the mutual information is

d
dp

I(X; Y) =
d

dp
H(Y)− H(Y|X) =

d
dp

h
(
(1− p)(1− α)

)
− (1− p)h(α)

= −(1− α) log
1− (1− p)(1− α)

(1− p)(1− α)
+ h(α) = 0

which gives

1− p =
1

(1− α)
(
1 + 2

h(α)
1−α
)

Inserting to the mutual information gives

C = h

(
1(

1 + 2
h(α)
1−α
)
)
−

h(α)
1−α

1 + 2
h(α)
1−α

= log
(

1 + 2
h(α)
1−α

)
− h(α)

1− α

Here the value for α → 1 becomes a limit value
which can be found as C → 0. Then the capacity
can be plotted as a function of α as shown here to
the right.

C

α

1

1
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6.15. (a) The mutual information between X and Y is

I(X; Y) = H(Y)− H(Y|X)

= H(Y)−
1

∑
i=0

H(Y|x = i)P(x = i) = H(Y)− H(α0, α1, α2, α3, α4, α5)

So, what is left to optimize is H(Y). From the probability table we see that p(y = j|x = 0) = αj
and p(y = j|x = 1) = α5−j. If we assume that the probability of X is given by p(x = 0) = p
and p(x = 1) = 1 − p, then the joint probability is given by p(y = j, x = 0) = pαj and
p(y = j, x = 1) = (1− p)α5−j. Hence, we can write the probability for Y as p(y = j) =
pαj + (1− p)α5−j and the entropy as

H(Y) =
5

∑
j=0

(pαj + (1− p)α5−j) log(pαj + (1− p)α5−j)

The corresponding derivative with respect to p is

∂

∂p
H(Y) =

5

∑
j=0

(αj − α5−j)
(

log(pαj + (1− p)α5−j) +
1

ln 2

)
Then, setting p = 1

2 and splitting in two sums we get

∂

∂p
H(Y)

∣∣∣
p= 1

2

=
2

∑
j=0

(αj − α5−j)
( 1

2 ln 2
+ log(αj + α5−j)

)
+

5

∑
j=3

(αj − α5−j)
( 1

2 ln 2
+ log(αj + α5−j)

)
In the second sum replace the summation variable with n = 5− j, then

∂

∂p
H(Y)

∣∣∣
p= 1

2

=
2

∑
j=0

(αj − α5−j)
( 1

2 ln 2
+ log(αj + α5−j)

)
+

2

∑
n=0

(α5−n − αn)
( 1

2 ln 2
+ log(α5−n + αn)

)
Since (α5−n − αn) = −(αn − α5−n) we get two identical sums with different sign,

∂

∂p
H(Y)

∣∣∣
p= 1

2

=
2

∑
j=0

(αj − α5−j)
( 1

2 ln 2
+ log(αj + α5−j)

)
−

2

∑
j=0

(αj − α5−j)
( 1

2 ln 2
+ log(αj + α5−j)

)
= 0

and we have seen that p = 1
2 maximizes H(Y). (Here the maximum follows from the fact that

the entropy is a concave function.)
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Then, for p = 1
2 , we get

H(Y) = −
5

∑
j=0

1
2
(αj + α5−j) log

1
2
(αj + α5−j)

=
1
2

5

∑
j=0

(αj + α5−j)−
1
2

5

∑
j=0

(αj + α5−j) log(αj + α5−j)

= 1− 1
2

( 5

∑
j=0

(αj + α5−j) log(αj + α5−j) +
2

∑
n=0

(αn + α5−n) log(αn + α5−n)
)

= 1−
2

∑
j=0

(αj + α5−j) log(αj + α5−j) = 1 + H(α0 + α5, α1 + α4, α2 + α3)

Hence, the capacity is

C6 = 1 + H(α0 + α5, α1 + α4, α2 + α3) + H(α0, α1, α2, α3, α4, α5)

(b) The right hand inequality is straight forward since

C6 ≤ I(X; Y) = H(X)− H(X|Y) ≤ H(X) ≤ log |X | = 1

For the left hand inequality we first derive the capacity for the corresponding BSC. The error
probability is p = α3 + α4 + α5, hence,

CBSC = 1− h(p) = 1− H(α0 + α1 + α2, α3 + α4 + α5)

So, to show that CBSC ≤ C6 we should show that

C6 − CBSC = 1 + H(α0 + α5, α1 + α4, α2 + α3) + H(α0, α1, α2, α3, α4, α5)

− 1 + H(α0 + α1 + α2, α3 + α4 + α5)

is non-negative. For this we introduce a new pair of random variables A and B with the joint
distribution and marginal distributions according to

B
P(A, B) 0 1 2

A
0 α0 α1 α2
1 α5 α4 α3

A P(A)
0 α0 + α1 + α2
1 α3 + α4 + α5

B P(B)
0 α0 + α5
1 α1 + α4
2 α2 + α3

Then we can identify in the capacity formula above

C6 − CBSC = 1 + H(B)− H(A, B)− 1 + H(A)

= H(A) + H(B)− H(A, B) = I(A; B) ≥ 0

which is the desired result. (The above inequality can also be obtained from the IT-inequality).

Chapter 7

7.1. (a) R = 3
6

(b) Find the codewords for u1 = (100), u2 = (010) and u3 = (001) and form the generator matrix

G =

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0
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(c) List all codewords

u x
000 000000
001 001110
010 010101
011 011011

u x
100 100011
101 101101
110 110110
111 111000

Then we get dmin = minx 6=0{wH(x)} = 3

(d) From part b we note that G = (I P). Since

(
I P

) (P
I

)
= P⊕ P = 0

we get

H = (PT I) =

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1


(e) List the most probable error patterns

e s = eHT

000000 000
100000 011
010000 101
001000 110
000100 100
000010 010
000001 001
100100 111

where the last row is one of the weight two vectors that gives the syndrom (111).

(f) One (correctable) error

u = 101
⇒ x = 101101

e = 010000
⇒ y = x⊕ e = 111101

⇒ s = yHT = 101
⇒ ê = 010000
⇒ x̂ = y⊕ ê = 101101
⇒ û = 101

An uncorrectable error

u = 101
⇒ x = 101101

e = 001100
⇒ y = x⊕ e = 100001

⇒ s = yHT = 010
⇒ ê = 000010
⇒ x̂ = y⊕ ê = 100011
⇒ û = 100

7.2. Consider the graphical interpretation of Fn
2 and the two codewords xi and xj.
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×x1 × x2
γ + 1

d ≥ dmin

λ λ

A received symbol that is at Hamming distance at most λ from a codeword is corrected to that
codeword. This is indicated by a sphere with radius λ around each codeword. Received symbols
that lies outside a sphere are detected to be erroneous. The distance from one codeword to the
sphere around another codeword is γ+ 1, the number of detected errors, and the minimal distance
between two codewords must be at least γ + 1 + λ. Hence, dmin ≥ λ + γ + 1.

7.3. (a) For the code to be linear the all-zero vector should be a codeword and the (position-wise)
addition of any two codewords should again be a codeword. Since the all-zero vector is a
codeword in B it is also a codeword in BE. To show that the addition of two codewords is
again a codeword we need to show that the resulting vector has even weight. For this we
use the position-wise AND function to get the positions in which both codewords have ones.
Then if y1, y2 ∈ B the weight of their sum can be written as

wH(y1 + y2) = wH(y1) + wH(y2)− 2wH(y1&y2)

here we notice that the first two terms are known to be even and the third term is also even
since it contains the factor 2. Therefore the resulting vector is also even and we conclude that
the code is even.
For the case when an extra bit is added such that the codeword has even weight the code is
not linear since the all-zero vector is not a codeword.

(b) A vector y = (y1 . . . yn+1) is a codeword iff yHT
E = 0. This gives

yHT
E = (y1 . . . ynyn+1)


1

HT ...
1

0 . . . 0 1


=
(
(y1 . . . yn)HT ∑n+1

i=1 yi
)
= 0

which gives the two conditions that (y1 . . . yN) ∈ B and that wH(y1 . . . yn+1) = even.

(c) Assume B has minimum distance d and BE minimum distance dE. If d is even then dE = d,
but if d odd then dE = d + 1.

(d) H =
(
1 1 1 1 1 1 1 1

)
.

7.4. The error probability when transmitting one bit with energy Eb over a channel with Gaussian noise
of level N0/2 is Pb = Q(

√
2Eb/N0). A repetition code with N repetitions gives the energy Eb/N

per transmitted bit, and thus the error probability Pb,N = Q(
√

2Eb/N0N). On the other hand, the
redundancy of the code gives that it requires at least i = dN/2e errors in the codeword for the
result to be erroneous. Since there are (N

i ) vectors with i errors, the total error probability becomes

Perror =
N

∑
i=dN/2e

(
N
i

)
Q

(√
2

Eb/N
N0

)
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In MATLAB the Q-function can be derived from the erfc-function as

function Qfunc = Q(x)
Qfunc = 1/2*erfc(x/sqrt(2));

A plot of the results for N = 3, 5, . . . , 15 is shown in the figure below.
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Note: The fact that the error probability actually gets worse by using the repetition code might
come as a surprise, especially since it is a standard example of a error correcting code. But, what
the code actually does is that it prolongs the transmission time for a signal, using the same energy,
and thus lowering the amplitude. The decoding of this long signal does not use the complete
signal, but rather split it into pieces and sum up the result. If instead the whole signal was used
the result should be roughly the same in all cases. This can be employed by using a soft decoding
algorithm instead of hard decision, bit by bit.

7.5. —

7.6. The free distance is the minimum weight of a non-zero path, starting and ending in the all-zero
state. A simple and brute force method to find it is to start in the zero state and give a non-
zero input. After this, follow all possible paths, counting the Hamming weight of the paths, until
the zero state has the minimum commutative metric. This can be done in a tree, by expanding
the minimum weight node until the zero state is minimum. It can also be done in a trellis by
expanding the paths on step at a time until the zero state has a minimum weight. Below the trellis
version of the algoritm is shown.
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The algorithm is stopped when there are no other state with less weight than the zero state. Then
it is seen that the free distance is dfree = 5. Notice that there are no branches diverging from the
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zero path once it has remerged. Such branches cannot become less than the metric in the zero state
it emerges from.

In this case, the algorithm could have stopped already after the third step by noticing that the last
step in the path going back to the zero state will add weight 2. Hence, the path up to any other
state must be 2 less than the zero state at the same time instant, which is 5. There are publications
of more efficient algorithms talking these things into account.

The decoding is done in a trellis comparing the received sequence with all the possible sequences
of that length. The metric used in the following picture is the Hamming distance.
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In the figure the red path is found by following the surviving branches from the end node to the
start node. This corresponds to the minimum distance path, or the maximum likelihood path. In
this case it is

v̂1 = 00 11 01 01 11 00 00 00 00 ⇒ û1 = 0110000

So the answer is that the most likely transmitted information sequence is û1 = 0110000.

It is worth noticing that there are 27 possible information sequences, so the decoding in the trellis
has compared 128 code sequences with the received sequence and sorted out the one with least
Hamming distance.

7.7. The encoder circuit for this generator matrix is

+

+ +

x

y(0)

y(1)

Following the same structure and methods as in Problem ??, the free distance is derived from the
following trellis.
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⇒ dfree = 4

38



Decoding is done as follows.
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Hence, the most likely code sequence is v̂ = 00 11 00 01 01 10 01 00 00 and the corresponding
information sequence is û = 0111100.

7.8. (a) According to the left trellis on the next page, dfree = 6. It corresponds to the information path
110000 . . ..

(b) Decoding is done with the right trellis on the next page. There are two paths through the
trellis giving the minimum distance,

û1 = 100011 (000)
û2 = 011001 (000)
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7.9. In Problem ?? the generator matrix

G(D) =
(
1 + D + D2 1 + D2)

was specified. To show that they generate the same code, we should show that a codeword gener-
ated by one matrix also can be generated by the other. Their relation is Gs(D) = 1

1+D2 G(D).

First assume the code sequence v1(D) is generated by Gs(D) from the information sequence u1(D)

as v1(D) = u1(D)Gs(D) = u1(D) 1
1+D2 G(D). Thus, v1(D) is also generated by G(D) from the

sequence ũ1(D) = u1(D)
1+D2 . Similarly, if a code sequence v2(D) is generated gy G(D) from u2(D),

then it is also generated by Gs(D) from ũ2(D) = (1 + D2)u2(D). That is, any codeword generated
by Gs(D) can also be generated by G(D), and vice versa, and the sets of codewords, i.e. the codes,
are equivalent.

7.10. (a)

x7 + x6 + x4 + x2 + x + 1
x4 + x3 + 1

= x3 + 1 +
x2 + x

x4 + x3 + 1

remainder 6= 0, so no acceptance.
(b)

x10 + x8 + x6 + x5 + x3 + x2 + 1
x4 + x3 + 1

= x6 + x5 +
x3 + x2 + 1
x4 + x3 + 1

remainder 6= 0, so no acceptance.
(c)

x10 + x6 + x5 + x4 + x2 + x + 1
x4 + x3 + 1

= x6 + x5 + x4 + x3 + x2 + x + 1

remainder = 0, so acceptance.

7.11.

Chapter 8

8.1. According to the definition of differential entropy (H(X) = −
∫

f (x) log f (x) dx) we get that:

(a)
H(X) = −

∫ b

a
f (x) log f (x) dx = −

∫ b

a

1
b− a

log
(

1
b− a

)
dx

=

[
x

b− a
log (b− a)

]b

a
= log (b− a)

(b)
H(X) = −

∫ ∞

−∞
f (x) log f (x) dx

= −
∫ ∞

−∞

1√
2πσ2

e−
(x− µ)2

2σ2 log
[

1√
2πσ2

e−
(x− µ)2

2σ2

]
dx

= log
√

2πσ2
∫ ∞

−∞

1√
2πσ2

e−
(x− µ)2

2σ2 dx

+
log e
2σ2

∫ ∞

−∞
(x− µ)2 1√

2πσ2
e−

(x− µ)2

2σ2 dx

=
1
2

log (2πσ2) +
log e
2σ2 σ2 =

1
2

log (2πeσ2)
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(c)
H(X) = −

∫ ∞

0
f (x) log f (x) dx = −

∫ ∞

0
λe−λx log

(
λe−λx

)
dx

= −
∫ ∞

0
λe−λx (log λ− λx log e) dx = − log λ + λ log e

∫ ∞

0
xλe−λx dx

= − log λ + log e = log
e
λ

(d)
H(X) = −

∫ ∞

−∞

1
2

λe−λ|x| log
(

1
2

λe−λ|x|
)

dx

= −
[

1
2

∫ 0

−∞
λeλx log

(
λ

2
eλx
)

dx +
1
2

∫ ∞

0
λe−λx log

(
λ

2
e−λx

)
dx
]

= −
[∫ ∞

0

(
λe−λx log

(
λ

2

)
+ λe−λx log e(−λx)

)
dx
]

= −
[

log
(

λ

2

)
− λ log e

∫ ∞

0
xλe−λx dx

]
= log

2e
λ

8.2. First derive α from
∫

f (x, y)dxdy = 1,

∞∫∫
0

f (x, y)dxdy = α2
∫ ∞

0
e−xdx

∫ ∞

0
e−ydy = α2 ⇒ α = 1

(a) The probability that both X and Y are limited by 4 is

P(X < 4, Y < 4) =
4∫∫

0

e−(x+y)dxdy =
(∫ 4

0
e−xdx

)2
=
([
−e−x

]4

0

)2

=
(
1− e−4)2

= 1− 2e−4 + e−8 ≈ 0.9637

(b) Since f (x, y) = e−(x+y) = e−xe−y = f (x) f (y), the variables X and Y are independent and
identically distributed., and they both have the same entropy

H(X) = −
∫ ∞

0
e−x log e−xdx = log e

∫ ∞

0
xe−xdx = log e[−(1 + x)e−x]∞0 = log e

The joint entropy is

H(X, Y) = H(X) + H(Y) = 2H(X) = 2 log e = log e2

(c) Since X and Y are independent H(X|Y) = H(X) = log e.

8.3. First get α from

∞∫∫
0

f (x, y)dxdy =
(

α
∫ ∞

0
2−xdx

)2
=
(

α
[
−2−x

ln 2

]∞

0

)2
=
( α

ln 2

)2
= 1⇒ α = ln 2

(a) The probability is

P(X < 4, Y < 4) =
4∫∫

0

ln2 2−(x+y)dxdy =
(

ln 2
∫ 4

0
2−xdx

)2

=
(

ln 2
[−2−x

ln 2

]4

0

)2
= (1− 2−4)2 =

225
256
≈ 0.88
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(b) Since X ad Y are i.i.d. the joint entropy is

H(X, Y) = 2H(X) = log
( e

ln 2

)2
≈ 3.94

where

H(X) = −
∫ ∞

0
α2−x log α2−xdx = −

∫ ∞

0
α2−x

(
log α− x

)
dx

= α
∫ ∞

0
x2−xdx− log α = ln 2

[
− (1 + x ln 2)2−x

ln2 2

]∞

0

=
1

ln 2
− log(ln 2) = log

e
ln 2
≈ 1.97

(c) Since X and Y are independent H(X|Y) = H(X) = log e
ln 2 .

8.4. (a) Assign Y = ln X, which is N(µ, σ) distributed, then X = eY. Then,

P(X < a) = P
(
eY < a

)
= P

(
Y < ln a)

=
∫ ln a

−∞

1√
2πσ2

e−
(y−µ)2

2σ2 dy =

[
x = ey ⇒ y = ln x
dy = 1

x dx

]
=
∫ a

0

1

x
√

2πσ2
e−

(ln x−µ)2

2σ2 dx

which means fX(x) = 1
x
√

2πσ2 e−
(ln x−µ)2

2σ2 .

(b) The mean, second order moment and variance can be found as

E[X] =
∫ ∞

0

x

x
√

2πσ2
e−

(ln x−µ)2

2σ2 dx =

[
y = ln x ⇒ x = ey

dy = 1
x dx

]
=
∫ ∞

−∞

ey
√

2πσ2
e−

(y−µ)2

2σ2 dy

=
∫ ∞

−∞

1√
2πσ2

e−
(y−(µ+σ2))2

2σ2 eµ+ σ2
2 dy = eµ+ σ2

2

E[X2] =
∫ ∞

0

x2

x
√

2πσ2
e−

(ln x−µ)2

2σ2 dx =

[
y = ln x ⇒ x = ey

dy = 1
x dx

]
=
∫ ∞

−∞

e2y
√

2πσ2
e−

(y−µ)2

2σ2 dy

=
∫ ∞

−∞

1√
2πσ2

e−
(y−(µ+2σ2))2

2σ2 e2µ+2σ2
dy = e2µ+2σ2

V[X] = E[X2]− E[X]2 = e2µ+2σ2 − e2µ+σ2
= e2µ+σ2(

eσ2 − 1
)

(c) The entropy is derived by using the same change of variables, y = ln x,

H(X) = −
∫ ∞

0

1

x
√

2πσ2
e−

(ln x−µ)2

2σ2 log
( 1

x
√

2πσ2
e−

(ln x−µ)2

2σ2
)

dx

= −
∫ ∞

−∞

1√
2πσ2

e−
(y−µ)2

2σ2 log
( e−y
√

2πσ2
e−

(y−µ)2

2σ2
)

dx

= log e
∫ ∞

−∞

y√
2πσ2

e−
(y−µ)2

2σ2 −
∫ ∞

−∞

1√
2πσ2

e−
(y−µ)2

2σ2 log
( 1√

2πσ2
e−

(y−µ)2

2σ2
)

dx

=
E[Y]
ln 2

+ H(Y) =
µ

ln 2
+

1
2

log 2πeσ2
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8.5. —

8.6. (a) To simplify notations, let B denote the shaded region in the figure. Then, since the area of B
is 3ab, the density function is

f (x, y) =

{
1

3ab , x, y ∈ B
0, x, y 6∈ B

The entropy is

H(X, Y) = −
∫
B

1
3ab

log
1

3ab
dxdy = log

3
a

b
∫
B

1
3ab

dxdy = log 3ab

(b) To get f (x), integrate f (x, y) over y, to get

x

f (x) =
∫

R
f (x, y)dy

−a −a/2 a/2 a

1/3a

2/3a

Then the entropy of X can be derived as

H(X) = −
∫ −a/2

−a

2
3a

log
2
3a

dx−
∫ a/2

−a/2

1
3a

log
1
3a

dx−
∫ a

a/2

2
3a

log
2
3a

dx

= a
2
3a

log
3a
2

+ a
1
3a

log 3a = log 3a− 2
3

Similarly, H(Y) = log 3b− 2
3 .

(c) The mutual information is

I(X; Y) = H(X) + H(Y)− H(X, Y)

= log 3a− 2
3
+ log 3b− 2

3
− log 3ab = log 3− 4

3

(d) Since I(X; Y) = H(X)− H(X|Y) we get

H(X|Y) = H(X)− I(X; Y) = log 3a− 2
3
− log 3 +

4
3
=

2
3
+ log a

Similarly, H(Y|X) = 2
3 − log b.

8.7. Consider

D
(

f (x)
∣∣∣∣h(x)

)
=
∫

f (x) log
f (x)
h(x)

dx

= −
∫

f (x) log h(x)dx +
∫

f (x) log f (x)dx

= log 2πeσ2 − H f (X)

where we used that −
∫

f (x) log h(x)dx = log 2πeσ2.
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8.8. (a) The sum of two normal variables is normal distributed with N(µ1 + µ2,
√

σ2
1 + σ2

2 ).

(b) According to Problem ?? the entropy becomes 1
2 log 2πe(σ2

1 + σ2
2 ).

8.9. The differential entropy for a uniformly distributed variable between a and b is H(X) = log (b− a).

(a) H(X) = log (2− 1) = log 1 = 0
(b) H(X) = log (200− 100) = log 100 ≈ 6, 644

Chapter 9

9.1. The capacity of this additive white Gaussian noise channel with the output power constraint
E[Y2] ≤ P is

C = max
f (X):E[Y2]≤P

I(X; Y) = max
f (X):E[Y2]≤P

(H(Y)− H(Y|X))

= max
f (X):E[Y2]≤P

(H(Y)− H(Z))

Here the maximum differential entropy is achieved by a normal distribution and the power con-
straint on Y is satisfied if we choose the distribution of X as N(0, P− σ). The capacity is

C =
1
2

log (2πe(P− σ + σ))− 1
2

log (2πe(σ)) =
1
2

log (2πeP)− 1
2

log (2πeσ) =
1
2

log (
P
σ
)

9.2. From the problem formulation we know that

X ∼ U(1)
Z ∼ U(a), 0 < a ≤ 1

Then the addititve result Y = X + Z has the density function

fY(y) = fX(x) ∗ fZ(z) =


y
a 0 ≤ y ≤ a
1 a ≤ y ≤ 1
1 + 1

a −
y
a 1 ≤ y ≤ 1 + a

fY(y)

y
a 1 1 + a

1

The mutual information can be derived as

I(X; Y) = H(Y)− H(Y|X) = H(Y)− H(Z) = H(Y)− log a

To derive the entropy of Y split the derivation in three parts according to the linear slopes in the

density function. Use that
∫

y ln ydy = y2

2 ln y−
∫ y2

2
1
y dy = y2

2 ln y− y2

4 .

H1 = −
∫ a

0

y
a

log
y
a

dy =
1
a

log a
∫ a

0
ydy− 1

a

∫ a

0
y log ydy =

a
2

log a− a
2

log a +
a

4 ln 2
=

a
4 ln 2

H2 = −
∫ 1

a
1 log 1dy = 0

H3 = −
∫ 1+a

1

(
1 +

1
a
− y

a

)
log
(

1 +
1
a
− y

a

)
dy =


s = a + 1− y
ds = −dy
y = 1⇒ s = a
y = 1 + a⇒ s = 0


= −

∫ a

0

s
a

log
s
a

ds = H1(Y) =
a

4 ln 2
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The variable substitution is found from s
a = 1 + 1

a −
y
a . Summing up gives the entropy H(Y) =

H1 + H2 + H3 = a
2 ln 2 , and the mutual information becomes

I(X; Y) =
a

2 ln 2
− log a

9.3. (a) The received power is

PZ = |H2|2PY = |H1|2|H2|2PX

and the received noise is Gaussian with variance

N
2

=
N1|H1|2 + N2

2

Hence, an equivalent channel model from X to Z has the attenuation H1H2 and additive noise

with distribution n ∼ N(0,
√

N1|H1|2+N2
2 ). That means the capacity becomes

C = W log
(

1 +
|H1|2|H2|2PX

W(N1|H1|2 + N2)

)
(b) From the problem we get the SNRs for the two channels

SNR1 =
|H1|2PX

WN1
=

PY
WN1

SNR2 =
|H2|2PY

WN2
=

PZ
WN2

Then the total SNR can be expressed as

SNR =
|H1|2|H2|2PX

W(N1|H1|2 + N2)
=

|H1|2PX |H2|2PY
WN1WN2

PY
W2 N1 N2

W(N2 + N1|H1|2)

=

|H1|2PX
WN1

|H2|2PY
WN2

PY
WN1

+ |H1|2PY
WN2

=
SNR1 · SNR2

SNR1 + SNR2

Notice, that by considering the invers of the SNR, the noise to signal ratio, the derivations can
be considerably simplified,

1
SNR

=
W(N1|H1|2 + N2)

|H1|2|H2|2PX
=

WN1

|H2|2PX
+

WN2

|H1|2|H2|2PX
=

1
SNR1

+
1

SNR2

which is equivalent to the desired result.

9.4. We can use the total power P1 + P2 + P3 + P4 = 17 and for the four channels the noise power is
N1 = 1, N2 = 4, N3 = 9, N4 = 16. Let B = Pi + Ni for the used channels. Since (16 − 1) +
(16− 4) + (16− 9) > 17 we should not use channel four when reaching capacity. Similarly, since
(9− 1) + (9− 4) < 17 we should use the rest of the three channels. These tests are marked as
dashed lines in the figure below. Hence, B = P1 + 1 = P2 + 4 = P3 + 9, which leads to B =
1
3 (P1 + P2 + P3 + 14) = 1

3 (17 + 14) = 31
3 . The capacity becomes

C =
3

∑
i=1

1
2

log
(

1 +
Pi
Ni

)
=

3

∑
i=1

1
2

log
B
Ni

=
1
2

log
31
3
1

+
1
2

log
31
3
4

+
1
2

log
31
3
9

=
3
2

log 31− 5
2

log 3− 1 ≈ 2.4689
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N1

N2

N3

N4

P1

P2

P3

B

16

9

4

1

9.5. (a) Use the water filling algorithm to derive the capacity. When a sub-channel is deleted (Pi = 0)
the total number of sub-channel is changed and the power distribution has to be recalculated.
We get the following recursion:

1. Iteration 1
B = B− Ni =

1
6 (∑i Ni + P) = 14.17

Pi = (6.17, 2.17, 0.17, 4.17,−1.83, 8.17)
Sub-channel 5 should not be used, P5 = 0.

2. Iteration 1
B = 1

5 (∑i 6=5 Ni + P) = 13.8
Pi = B− Ni = (5.80, 1.80,−0.20, 3.80, 0, 7.80)
Sub-channel 3 should not be used, P3 = 0.

3. Iteration 1
B = 1

4 (∑i 6=3,5 Ni + P) = 13.75
Pi = B− Ni = (5.75, 1.75, 0, 3.75, 0, 7.75)
All remaining sub-channels can be used.

The capacities in the sub-channels are

Ci =
1
2

log
(

1 +
Pi
Ni

)
= (0.39, 0.10, 0, 0.23, 0, 0.60)

and the total capacity C = ∑i Ci = 1.32 bit/transmission.

(b) If the power is equally distributed over the sub-channels we get Pi = 19/6 = 3.17. That gives
the capacities

C = ∑
i

1
2

log
(

1 +
19/6

Ni

)
= 0.24 + 0.17 + 0.15 + 0.20 + 0.13 + 0.31 = 1.19 bit/transmission
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(c) When using only one sub-channel the capacity is maximised if we take the one with least
noise, N = 6. This gives the capacity C = 1

2 log 2(1 + 19/6) = 1.03 bit/transmission.

9.6. The allowed power level P∆ = −60 dBm/Hz = 10−60/10 mW/Hz gives the total power in a sub-
channel as P = P∆W mW, where W = 10 kHz is the bandwidthm. A useful measure of the SNR is
(in linear scale, i.e. not dB)

SNRi =
P|Gi|2
N0,iW

=
P∆W|Gi|2

N0,iW
=

P∆|Gi|2
N0,i

In dB scale this gives SNRi = P∆ + |Gi|2 − N0,i and is shown below,

Ch

SNR[dB]

60

0

45

1

20

2

35

3

40

4 Ch

Ci,[kbps]

199

0

149

1

67

2

116

3

133

4

The capacity per sub-channel is derived as Ci = W log
(
1+ SNR

)
, shown above. The total capaicty

is the sum, C = ∑i Ci = 199 + 149 + 67 + 116 + 133 = 665 kbps.

Chapter 10

10.1. In the following figure the resulting distributions are depicted.

X
+1−1

Y

f (y|X = +1)f (y|X = −1)

α α

X
+1−1

Y

f (y|X = +1)f (y|X = −1)

α α

f (y)

1
2α

1
α

2α− 2

(a) For α < 2 the left figure describes the received distribution. Since the density functions
f (y|X = 1) and f (y|X = −1) are non-overlapping, the transmitted value can directly be
determined from the received Y. Hence, I(X; Y) = 1.

48



The result can also be found from the following derivations:

H(Y|X = i) = −
∫ α/2

−α/2

1
α

log
1
α

dx = log α

H(Y|X) = ∑
1
2

H(Y|X = i) = log α

H(Y) = −2
∫ α/2

−α/2

1
2α

log
1

2α
dx = log 2α = 1 + log α

I(X; Y) = H(Y)− H(Y|X) = 1 b/tr

(b) For α ≥ 2 there is an overlap between f (y|X = 1) and f (y|X = −1) as shown in the right
figure. Still, H(Y|X) = log α, but since the distribution of Y depends on the amount of the
overlap, we need to rederive the entropy,

H(Y) = −
∫ 1− α

2

−1− α
2

1
2α

log
1

2α
dx−

∫ −1+ α
2

1− α
2

1
α

log
1
α

dx−
∫ 1+ α

2

−1+ α
2

1
2α

log
1

2α
dx

= 2
1

2α
log(2α)2 +

1
α

log(α)(α− 2)

=
2
α
+ log α

Thus, I(X; Y) = 2
α b/tr.

Summarising, the mutual information becomes

I(X; Y) = min
{

1,
1
α

}
, α > 0

which is plotted below.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

10.2. For α = 4 the mutual information is I(X; Y) = 2/4 = 1/2. We get the following density functions,
where also the intervals for hard decoding is shown.
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X
+1−1

Y

f (y|X = −1) f (y|X = 1)

f (y)

1
2α

1
α

Ỹ −1 ∆ +1

The probability for overlap is P(∆|X = i) = 1/2, and the resulting DMC channel is the binary
erasure channel. Hence, the capacity is

CBEC = 1− 1
2
=

1
2

In most cases it is beneficially to use the the soft information, the value of the received symbol
instead of the hard decoding, since it should grant some extra information. E.g. in the case of
binary transmission and Gaussian noise it is a difference if the received symbol is 3 or 0.5. But in
the case here we have uniform noise. Then we get three intervals where for Ỹ = −1 it is certain
that X = −1 and for Ỹ = 1 it is certain that X = 1. When Ỹ = ∆ the two possible transmitted
alternatives are equally likely and we get no information at all. Since the information is either
complete or none, there is no difference between the two models.

As a comparison, for α > 2 the probability for the overlapped interval is P(∆|X = i) = α−2
α =

1− 2
α . Thus, the capacity for the BEC is CBEC = 2

α , which is the same as for the continuous case.

10.3. The mutual information is I(X; Y) = H(Y)− H(Y|X) = H(Y)− H(X + Z|X) = H(Y)− H(Z),
where H(Z) = log (1− (−1)) = log 2. Since Y ranges from -3 to 3 with uniform weights p−2/2
for −3 ≤ Y ≤ −2, (p−2 + p−1)/2 for −2 ≤ Y ≤ −1 etc the maximum of H(Y) is obtained
for a uniform Y. This can be achieved if the distribution of X is ( 1

3 , 0, 1
3 , 0, 1

3 ). Now H(Y) =
log (3− (−3)) = log 6.

We conclude that C = log 6− log 2 = log 3.

10.4. (a) The maximum amount of information per transmission is given by the mutual information,
I(X; Y) = H(Y)− H(Y|X). Here

H(Y|X) = H(Z) = −
∫ −0.5

−1.5

1
4

log
1
4

dz−
∫ 0.5

−0.5

1
2

log
1
2

dz−
∫ 1.5

0.5

1
4

log
1
4

dz =
3
2

Since the outcomes for X are equally likely, in this case the density function for Y becomes

f (y) =


1
8 , −3.5 ≤ y ≤ 3.5
1

16 , −4.5 ≤ y < −3.5 and 3.5 < y ≤ 4.5
0, o.w.

which gives the entropy

H(Y) = −
∫ −3.5

−4.5

1
16

log
1

16
dy−

∫ 3.5

−3.5

1
8

log
1
8

dy−
∫ 4.5

3.5

1
16

log
1

16
dy =

25
8

and thus, I(X; Y) = 25
8 −

3
2 = 13

8 ≈ 1.625 bit/transmission
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(b) When assuming that X is not equally distributed, still H(Y|X) = H(Z) = 3
2 . So to maximise

I(X; Y) we need to maximise H(Y). In the figure below the density functions for {Z|X} are
shown. These sum up to give the density function for Y. Since it is composed of flat areas,
i.e. intervalls in which f (y) is constant, it is possible to construct an equivalent DMC with
symbols {y0, y1, . . . , y8} corrsponding to intervals.

y

f (y|x)

x0 x1 x2 x3

y

f (y)

x0 x1 x2 x3
y0 y1 y2 y3 y4 y5 y6 y7 y8

To maximise over all distributions on X we can by symmetry reasons set P(x0) = P(x3) = p
and P(x1) = P(x2) =

1
2 − p. Then the distributions on the intervals becomes

P(yi) =


p
4 , i = 0, 8
p
2 , i = 1, 7
1
8 , i = 2, 6
1
4 −

p
2 , i = 3, 4, 5

Then the entropy becomes

H(Y) = −2
p
4

log
p
4
− 2

p
2

log
p
2
− 2

1
8

log
1
8
− 3(

1
4
− p

2
) log(

1
4
− p

2
)

= · · · = 3
4

h(2p) +
p
2
+

9
4

Takinh the derivative equal to zero gives

∂

∂p
H(Y) =

3
4

(
2 log(1− 2p)− 2 log 2p

)
+

1
2
=

3
2

log
1− 2p

2p
+

1
2
= 0

or, equivalently,

p =
1

22/3 + 2

which gives H(Y) ≈ 3.1322 and I(X; Y) ≈ 1.6322 bit/transmission.
The average power is increased from E[X2] = 5 for equaly distribution to E[X2] = 2 · 32 p +

2( 1
2 − p) ≈ 5.46 for the optiomal distribution.

10.5. (a) The original system is 8-PAM with equal probabilities, which has a second order moment
E[X2] = 21. Assigning equal probability for zero and one in the tree, the probabilities for the
nodes in the tree becoms
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1

1/2

1/4

1/8

1/16
1/32 1/64

1/64
1/32 1/64

1/64

1/16
1/32 1/64

1/64
1/32 1/64

1/641/8 1/16
1/16

1/4 1/8
1/8

1/2 1/4
1/4

By summing the inner node probabilities, the average length is 3, hence it is comapable in bit
rate with the 8-PAM system. If the leaves are mapped to signals in an 14-PAM constellation
where the least probable nodes has the highes distance to the center, the following constella-
tion probabilities are obtained

−13

1/64

−11

1/64

−9

1/64

−7

1/64

−5

1/16

−3

1/8

−1

1/4

1

1/4

3

1/8

5

1/16

7

1/64

9

1/64

11

1/64

13

1/64

Thus, the second order moment is E[X2] = 19, which gives the shaping gain γs = 10 log10
21
19 =

0.4347 dB.

(b) Below is a tree with k levels and the probabilities for the levels.

1

1/2

1/4

1/8

1/2k

1/2k+1
1/2k+2

1/2k+3

The average lengths for the paths in the tree is, according to the path length lemma,

L = 1 + 2
1
2
+ 2

1
4
+ 2

1
8
+ · · ·+ 2

1
2k+1 + 4

1
2k+2

= 1 + 1 +
1
2
+

1
4
+ · · ·+ 1

2k +
1
2k

= 1 +
k

∑
i=0

( 1
2 )

i +
1
2k = 1 +

1− ( 1
2 )

k+1

1− 1
2

+
1
2k = 1 + 2− ( 1

2 )
k +

1
2k = 3

(c) In the tree there are 2k + 4 leaves, each mapped to a signal point in a PAM constellation.
Mapping high probability leaves to short distance fro origin, means that on the positive signal
axis, signal 2i − 1 has probability 1/2i+1, i = 1, . . . k. Then therer are also four signals at
positions 2k + 1, 2k + 3, 2k + 5 and 2k + 7 with probabilities 1/2k+3. Deriving the second
order moment for the positive half gives

1
2

E[X2] =
k

∑
i=1

(2i− 1)2 1
2i+1 +

1
2k+3

(
(2k + 1)2 + (2k + 3)2 + (2k + 5)2 + (2k + 7)2︸ ︷︷ ︸

≈4·4k2=24k2, k large

)

= 2
k

∑
i=1

i2
1
2i︸ ︷︷ ︸

→12

+ 2
k

∑
i=1

i
1
2i︸ ︷︷ ︸

→4

+
1
2

k

∑
i=1

1
2i︸ ︷︷ ︸

→ 1
2

+
22

2k−1︸ ︷︷ ︸
→0

→ 17
2

, k→ ∞

Hence, E[X2]→ 17 as k grows to infinity. The shaping gain is γs = 10 log10
21
17 = 0.9177 dB.
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10.6. (a) The radius is derived in the book as R =
Γ( N

2 +1)1/N
√

π
.

(b) The integral specifies that one variable (dimension) is fixed and the integral spans over the
remaining dimensions. This gives the projection in one dimension. Using the formula

∫
|x|2≤R2

f (|x|)dx =
2πN/2

Γ
(N

2
) ∫ R

0
xN−1 f (x)dx

gives

f (x) = fX(x) =
∫
|x̃|2≤R2−x2

dx̃ =
2π

N−1
2

Γ(N−1
2 )

∫ √R2−x2

0
xN−2dx

=
2π

N−1
2

Γ(N−1
2 )

(R2 − x2)
N−1

2

N − 1

=
π

N−1
2

Γ(N+1
2 )

(
Γ
(N

2 + 1
)2/N

π
− x2

) N−1
2

where in the last equality the radius is inserted and it is used that sΓ(s) = Γ(s + 1).

(c) Using Stirling’s approximation gives

f (x) ≈ π
N−1

2( N−1
2
e

) N−1
2

(( N
2
e

) N
2

2
N

π
− x2

) N−1
2

=

(
π2e

N − 1

( N
2πe
− x2

)) N−1
2

=
(

1 +
1
2 − πex2

N−1
2

) N−1
2

(d) Letting N → ∞, and hence N−1
2 → ∞, gives

lim
N→∞

f (x) = e
1
2−πex2

=
1√

2π 1
2πe

e
− x2

2 1
2πe =

1√
2πσ2

e−
x2

2σ2

where σ2 = 1
2πe . Hence, projecting the infinity-dimensional spherical uniform distribution,

to one dimension gives the Normal distribution, X ∼ N
(
0,
√

1
2πe
)
.

10.7. (a) There is a constant power level of P = −70 dBm/Hz over the whole bandwith. Similarly, the
noise level is N0 = −140 dBm/Hz. However the attenuation of the transmitted signal varies
over the channel as |Hi|2 = 5i + 10 dB. (In reallity this can resemblance copper cable trans-
mission, where the cable act as a low-pass filter, attenuating higher frequencies stronger than
lower. However, the attenuation curve is a bit more complicated than a linerly decreasing
function.)
The received signal to noise ratio for each sub-channel becomes

SNRi = −70− (5i + 10) + 140 = 60− 5i dB

53



and the derived capacity per sub-chanel

Ci = ∆ f log
(
1 + 10SNRi/10) = 104 log

(
1 + 10(60−5i)/10

)
In the following table the attenuation, SNR and capacity is listed for the sub-channels

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|Hi|2[dB] 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
SNRi[dB] 60 55 50 45 40 35 30 25 20 15 10 5 0 −5 −10 −15
Ci[kbps] 199 183 166 149 133 116 100 83 66 50 35 21 10 4.0 1.4 0.45

Summing over all sub-chanels gives the total capacity as

C = ∑
i

Ci = 1317 [kbps]

(b) Instead of the capacity, we want to derive an estimate of the established bit rate when the
system is working with a bit error rate of 10−7 and an error correcting code with coding gain
γc = 3 dB. The bit error rate gives an SNR gap of Γ = 9 dB, and the efficient SNR becomes

S̃NRi = SNRi − Γ + γc = SNRi − 6 dB

The estimated bit rate is

Ri = ∆ f log
(
1 + 10S̃NRi/10)

In the following table the effective SNR and the estimated bit rate is shown.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S̃NRi[dB] 54 49 44 39 34 29 24 19 14 9 4 −1 −6 −11 −16 −21
Ri[kbps] 179 163 146 130 113 96 80 63 47 32 18 8.4 3.2 1.1 0.36 0.11

The total bit rate is

R = ∑
i

Ri = 1080 [kbps]

Chapter 11

11.1. From the problem we have P(X = j) = 1
k , j = 0, 1, . . . , k − 1, and that te Hamming distor-

tion is used. Assign the probability of distortion as P(X 6= X̂). Then the average distortion is
E[d(X, X̂)] = δ which is within the minimisation criteria. The mutual information betweeen X
and X̂ is bounded by

I(X; X̂) = H(X)− H(X|X̂) = log k− H(X|X̂) ≥ log k− δ log(k− 1)− h(δ)

where the inequality follows from Fano’s lemma as

H(X|X̂) ≤ h
(

P(X 6= X̂)
)
+ P(X 6= X̂) log(k− 1) = δ log(k− 1) + h(δ)

To show the rate distortion function we need to find a distribution on P(X|X̂) that achieves equal-
ity in the bound above. From our asumptions we get P(X = X̂) = 1− δ. A reasonable attempt is
to set uniform distribution for the case when X 6= X̂, i.e.

P(X = j|X̂ = i) =

{
1− δ, i = j

δ
k−1 , i 6= j
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The conditional entropy can be derived as

H(X|X̂) = ∑
i

P(X̂ = i)∑
i

H(X|X̂ = i)

where

H(X|X̂ = i) = −∑
j 6=j

δ

k− 1
log

δ

k− 1
− (1− δ) log(1− δ)

= −δ log δ + δ log(k− 1)− (1− δ) log(1− δ) = δ log(k− 1) + h(δ)

Since iH(X|X̂ = i) is independent of i, the assumed distribution achieves equality in the bound
for the mutual information, and R(δ) = log k − δ log(k − 1)− h(δ). Finally, we need to find the
limits on δ, where the rate distortion function reaches zero. Then, observing that when δ = k−1

k
the conditional distribution P(X = j|X̂ = i) = 1

k , independent of i and j, this gives a point where
H(X|X̂) = log k. Hence, at this point R(δ) = 0. Since ther rate distortion function is non-increasing
and non-negative, we conclude that

R(δ) =

{
log k− δ log(k− 1)− h(δ), 0 ≤ δ ≤ k−1

k
0, δ ≥ 0

11.2. (a) The Lagrange optimisation function:

J( f ) = −
∫ ∞

0
f ln f dx + λ0

(∫ ∞

0
f dx− 1

)
+ λ1

(∫ ∞

0
x f dx− 1

λ

)
When taking the derivative of the function above one can think of the integrals as sums over
infinite vectors.

∂

∂ f
J( f ) = − ln f − 1 + λ0 + λ1x = 0

or, equivalently,

f = e−1+λ0+λ1x = eα+βx

where α = −1 + λ0 and β = λ1. The requirements on the distribution gives for β < 0

1 =
∫ ∞

0
eα+βxdx = − 1

β
eα

1
λ
=
∫ ∞

0
xeα+βxdx = − 1

β2 eα

which is solved by β = −λ and α = ln λ, and the density function is

f = eln λ−λx = λe−λx

which is the exponetial distribution.

(b) The entropy of the exponential distribution, f (x) = λe−λx, is

H f (X) = −
∫ ∞

0
f (x) ln λe−λxdx = λ

∫ ∞

0
x f (x)dx− ln λ

∫ ∞

0
f (x)dx = 1− ln λ

55



Let g(x) be an arbitrary density function where
∫ ∞

0 g(x)dx = 1 and
∫ ∞

0 xg(x)dx = 1/λ. Then,

Hg(X) = −
∫ ∞

0
g(x) ln g(x)dx

= −
∫ ∞

0
g(x) ln

g(x)
f (x)

f (x)dx

= −
∫ ∞

0
g(x) ln f (x)dx− D(g|| f )

≤ −
∫ ∞

0
g(x) ln f (x)dx

= λ
∫ ∞

0
xg(x)dx− ln λ

∫ ∞

0
g(x)dx

= 1− ln λ = H f (X)

11.3. (a) The mutual information is bounded as

I(X; X̂) = H(X)− H(X|X̂) = 1− ln λ− H(X− X̂|X̂)

≥ 1− ln λ− H(X− X̂) ≥ 1− ln λ− (1− ln
1
δ
) = − ln λδ

where the first inequality comes from dropping the condition in the entropy and the second
from the exponetial distribution maximising the entropy. THus, the bound is fiÃžlfilled with
equality if and only if {X− X̂|X̂} ∼ Exp( 1

δ ).

(b) Constructing a backward test channel from X̂ to X can be dne using an additive channel,
i.e. X = X̂ + Z where X ∼ Exp(λ) and Z =∼ Exp( 1

δ ). Then the distortion requirement is
fulfilled since E[d(X, X̂)] = E[X − X̂] = E[Z] = δ. To find the distribution on X̂ consider
that the density function of X = X̂ + Z is the convolution fX = fX̂ ∗ fZ. The convolution is
best solved in a transform plane, and thus we need the Laplace transform of an exponential
distribution (or rather the density function). The transform for X is

E
[
e−sX] = ∫ ∞

0
e−stλe−λtdt = λ

∫ ∞

0
e−(s+λ)tdt =

λ

s + λ
=

1
1 + s

λ

Similarly, the transform of Z is

E
[
e−sZ] = 1

1 + sδ

The convolution above gives E
[
e−sX] = E

[
e−sX̂]E[e−sZ] and, thus,

E
[
e−sX̂] = 1 + sδ

1 + s
λ

= δλ + (1− δλ)
1

1 + s
λ

which gives the inverse transform

fX̂(x̂) = δλδ(x̂) + (1− δλ)λe−λx̂

where δ(x̂) is the Dirac function. This means that P(X̂ = 0) = δλ, and for x̂ > 0 it follows an
exponential distribution with fX̂|X̂>0(x̂) = λe−λx̂. This distribution has a meaning as lons as
P(X̂ = X) is less than one, i.e. when 0 ≤ δλ ≤ 1, or, equivalently, 0 ≤ δ ≤ 1/λ. For δ > 1/λ

choose X̂ = 0 to get E[d(X, X̂)] = E[X − X̂] = E[X] = 1
λ < δ and thus the requirement is
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fulfilled. Since X̂ is deterministic and independent of X there is no information and R(δ) = 0.
Summarising, we have

R(δ) =

{
− ln(λδ), 0 ≤ δ ≤ 1/λ

0, δ > 1/λ

Note: This solution is based on [Verdu96] from 1996.

11.4. Follows directly from Problem ??.

11.5. (a) The density function is f (x) = 1
2
√

π
ex2/4. Since everything is symmetric around x = 0, the

derivations will be made only for the positive half. The numerical integrations that follows
can be erformed in different ways, here a trapetsoid method was used. Assuming a set of
x-values, x = x1, . . . , xn, with constant separation xi − xi−1 = ∆. Let y = y1, . . . , yn be the
corresponding set of function values. Then the area can be approximated by∫ xn

x1

y(x)dx ≈ ∆
( n

∑
i=1

yi −
y1 + yn

2

)
To derive the distortion the intervals {[0, 1], [1, 2], [2, 3], [3, ∞]} is used. In the numerical
derivations setting ∞ to 10 seems good enough. Then, assign δi = E[(X− Xq,i)

2] to get

δ1 =
∫ 1

0
(x− 0.5)2 f (x)dx ≈ 0.0214

δ2 =
∫ 2

1
(x− 1.5)2 f (x)dx ≈ 0.0134

δ3 =
∫ 3

2
(x− 2.5)2 f (x)dx ≈ 0.0053

δ4 =
∫ ∞

3
(x− 3.5)2 f (x)dx ≈ 0.0036

To derive the total average distortion we can use E[(X − Xq)] = ∑i E[(X − Xq,i)] over both
the positive and negative side, which gives the average distortion

E[(X− Xq)
2] = 2(δ1 + δ2 + δ3 + δ4) ≈ 0.0874

(b) In general,the distortion in the interval [a, b] when reconstructing to xq is δ =
∫ b

a (x− xq)2 f (x)dx.
Optimising with respect to the reconstruction value gives

∂

∂xq
δ = −

∫ b

a
2(x− xq) f (x)dx = 2xq

∫ b

a
f (x)dx− 2

∫ b

a
x f (x)dx = 0

hence, the optimal reqonstruction value is given by

x(opt)
q =

∫ b
a x f (x)dx∫ b
a f (x)dx

≈


0.48, i = 1
1.44, i = 2
2.40, i = 3
3.51, i = 4

The corresponding distortion measures are given by

δ
(opt)
i ≈


0.0213, i = 1
0.0129, i = 2
0.0047, i = 3
0.0036, i = 4

and the total distortion E[(X− x(opt)
q )2] ≈ 0.0850.
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(c) If the quantiser is followed by a compression algorithm, and the samples can be viewed as
independent, a limit on the number of bits per symbol is given by the entropy,

L ≥ H(P) = 2.55 bit/sample

Note: If the minimum length is estimetaed by a Huffamncode instead, it becomes 2.6 bit/sample.

11.6. The distortion is

E
[(

X− XQ

)2]
=
∫ 0

−∞

(
x +

√
2
π

σ
)2

f (x) +
∫ ∞

0

(
x−

√
2
π

σ
)2

f (x)

=
∫ ∞

−∞
x2 f (x)dx + 2

√
2
π

σ
(∫ 0

−∞
x f (x)dx−

∫ ∞

0
x f (x)dx

)
+

2
π

σ2
∫ ∞

−∞
f (x)dx

= σ2 − 4

√
2
π

σ
∫ ∞

0
x f (x)dx +

2
π

σ2

= σ2 − 4

√
2
π

σ
σ√
2π

+
2
π

σ2 = σ2
(

1− 2
π

)
=

σ2

π
(π − 2)

where it is used that
∫ 0
−∞ x f (x)dx = −

∫ ∞
0 x f (x)dx and that∫ ∞

0
x f (x)dx =

1√
2πσ

∫ ∞

0
xe−x2/2σ2

dx =
1√
2πσ

[
−σ2e−x2/2σ2

]∞

0
=

σ√
2π

11.7.

11.8.
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