- 8.5. For a one-dimensional discrete random variable over a finite interval the uniform distribution maximises the entropy. In this problem it will be shown that this is a more general rule. Consider a finite region in N dimensions, \mathcal{R} .
 - (a) Assume that $X = X_1, ..., X_N$ is discrete valued *N*-dimensional random vector with probability function p(x) such that

$$\sum_{\mathbf{x}\in\mathcal{R}} p(\mathbf{x}) = 1$$
$$p(\mathbf{x}) = 0, \mathbf{x} \notin \mathcal{R}$$

where \mathcal{R} has finite number of outcomes, $\sum_{x \in \mathcal{R}} 1 = A$. Show that the uniform distribution maximises the entropy over all such distributions.

(b) Assume that $\mathbf{X} = X_1, \dots, X_N$ is continuous valued *N*-dimensional random vector with density function $f(\mathbf{x})$ such that

$$\int_{\mathcal{R}} f(\mathbf{x}) d\mathbf{x} = 1$$
$$f(\mathbf{x}) = 0, \mathbf{x} \notin \mathcal{R}$$

where \mathcal{R} has finite volume, $\int_{\mathcal{R}} 1 dx = V$. Show that the uniform distribution maximises the differential entropy over all such distributions.

Solution:

(a) Since \mathcal{R} is finite the number of outcomes is also finite, $\sum_{x \in \mathcal{R}} 1 = A$. Then,

$$H(\mathbf{X}) - \log A = -\sum_{\mathbf{x} \in \mathcal{R}} p(\mathbf{x}) \log p(\mathbf{x}) - \log A$$
$$= \sum_{\mathbf{x} \in \mathcal{R}} p(\mathbf{x}) \log \frac{1/A}{p(\mathbf{x})}$$
$$\leq \sum_{\mathbf{x} \in \mathcal{R}} p(\mathbf{x}) \left(\frac{1/A}{p(\mathbf{x})} - 1\right) \log e$$
$$= \left(\sum_{\mathbf{x} \in \mathcal{R}} \frac{1}{A} - \sum_{\mathbf{x} \in \mathcal{R}} p(\mathbf{x})\right) \log e = 0$$

where the inequality follows from the IT inequality. That means $H(\mathbf{X}) \le \log A$ with equality if and only if $p(\mathbf{x}) = 1/A$, $\mathbf{x} \in \mathcal{R}$.

(b) Since \mathcal{R} is finite its volume is also finite, $\int_{\mathcal{R}} 1 dx = V$. Then,

$$H(\mathbf{X}) - \log V = -\int_{\mathcal{R}} f(\mathbf{x}) \log f(\mathbf{x}) d\mathbf{x} - \log V$$

= $\int_{\mathcal{R}} f(\mathbf{x}) \log \frac{1/V}{f(\mathbf{x})} d\mathbf{x}$
 $\leq \int_{\mathcal{R}} f(\mathbf{x}) \left(\frac{1/V}{f(\mathbf{x})} - 1\right) \log e d\mathbf{x}$
= $\left(\int_{\mathcal{R}} \frac{1}{V} d\mathbf{x} - \int_{\mathcal{R}} f(\mathbf{x}) d\mathbf{x}\right) \log e = 0$

where the inequality follows from the IT inequality. That means $H(\mathbf{X}) \leq \log V$ with equality if and only if $f(\mathbf{x}) = 1/V$, $\mathbf{x} \in \mathcal{R}$.