

Information Theory Lecture 7 AEP and its consequences

STEFAN HÖST

Law of large numbers

Theorem (The weak law of large numbers)

Let X_1, X_2, \ldots, X_n be i.i.d. random variables with expectation E[X]. Then, the arithmetic mean converges (in probability) to the expectation,

$$\frac{1}{n}\sum_{i}X_{i}\stackrel{p}{\rightarrow} E[X]$$

Stated differently, this means that for any $\varepsilon > 0$,

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i}X_{i}-E[X]\right|<\varepsilon\right)=1$$

Fair die

Example

Consider *n* consecutive rolls with a fair die, giving the results vector $\mathbf{x} = (x_1, \dots, x_n)$. Let $y_n = \frac{1}{n} \sum_i x_i$ be the average.

ID

ITY

Binary vector

Example

Consider a binary length 5 vector $\mathbf{X} = (X_1, X_2, ..., X_5)$, where X_i i.i.d. with $p(1) = \frac{2}{3}$. Let $Y = \sum X_i$ be the number of ones,

Binary vector

Example (cont'd)

AEP (Asymptotic Equipartition Property)

Definition (AEP)

The set of ε -typical sequences $A_{\varepsilon}(X)$ is the set of all *n*-dimensional vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)$ such that

$$\left|-\frac{1}{n}\log p(\boldsymbol{x}) - H(X)\right| \leq \varepsilon$$

AEP (Alternative definition)

The ε -typical sequences can definition as the set of vectors \boldsymbol{x} such that

$$2^{-n(H(X)+\varepsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\varepsilon)}$$

Information theory

Binary vector

Example (cont'd)

Consider a binary 5-dimensional vector where $p(1) = \frac{2}{3}$. The entropy is h(1/3) = 0.918. Let $\varepsilon = 0.138$ (15% of h(p)).

x	p (x)	x	p (x)	x	p (x)	
00000	0.0041	01011	0.0329 *	10110	0.0329 *	23
00001	0.0082	01100	0.0165	10111	0.0658 *	8
00010	0.0082	01101	0.0329 *	11000	0.0165	0
00011	0.0165	01110	0.0329 *	11001	0.0329 *	\vee
00100	0.0082	01111	0.0658 *	11010	0.0329 *	$\overline{\mathbf{x}}$
00101	0.0165	10000	0.0082	11011	0.0658 *	r)
00110	0.0165	10001	0.0165	11100	0.0329 *	
00111	0.0329 *	10010	0.0165	11101	0.0658 *	$\widehat{\star}$
01000	0.0082	10011	0.0329 *	11110	0.0658 *	P(26
01001	0.0165	10100	0.0165	11111	0.1317	ЩЧ U
01010	0.0165	10101	0.0329 *			~ 0

Theorem

For each ε there exists an integer n_0 such that, for each $n > n_0$, $A_{\varepsilon}(X)$ fulfills

1.
$$P(\mathbf{x} \in A_{\varepsilon}(X)) \geq 1 - \varepsilon$$

2.
$$(1-\varepsilon)2^{n(H(X)-\varepsilon)} \leq |A_{\varepsilon}(X)| \leq 2^{n(H(X)+\varepsilon)}$$

7

Stefan Höst

Information theory

Example

Example (cont'd)

Let $\varepsilon = 0.046$ (5% of h(1/3)).

п	$(1-\varepsilon)2^{n(H(X)-\varepsilon)}$	$\leq A_{\varepsilon}(X) \leq$	$2^{n(H(X)+\varepsilon)}$	$\frac{ A_{\varepsilon}(X) }{2^n}$
100	1.17 · 10 ²⁶	$7.51 \cdot 10^{27}$	1.05 · 10 ²⁹	5.9 · 10 ⁻³
500	$1.90 \cdot 10^{131}$	$9.10 \cdot 10^{142}$	$1.34 \cdot 10^{145}$	$2.78 \cdot 10^{-8}$
1000	$4.16 \cdot 10^{262}$	$1.00 \cdot 10^{287}$	$1.79 \cdot 10^{290}$	$9.38 \cdot 10^{-15}$

Example

Example (cont'd)

Let
$$\varepsilon = 0.046$$
 (5% of $h(1/3)$).

n	$P(\mathbf{x} = 11 \dots 1)$	$P(\pmb{x} \in A_{\varepsilon}(\pmb{X}))$
100	$2.4597 \cdot 10^{-18}$	0.660
500	$9.0027 \cdot 10^{-89}$	0.971
1000	$8.1048 \cdot 10^{-177}$	0.998

Source coding

A simple algorithm

Split the message space in two parts and encode separately

10

Information theory

Source coding theorem

Theorem

Let $\mathbf{X} = X_1 \dots X_n$ be a vector of n iid random variables with probability function p(x). Then there exists a code which maps sequences \mathbf{x} of length n to binary sequences such that the mapping is invertible and

$$L = \frac{1}{n} E\Big[\ell_{\mathbf{X}}\Big] \le H(\mathbf{X}) + \delta$$

where δ can be made arbitrarily small for sufficiently large n.

Communication system

Channel coding

- Information symbols: $U \in \mathcal{U} = \{u_1, u_2, \dots, u_M\}$
- Encoding function: x : U → X. Denote the codewords x_i = x(u_i), i = 1, ... M. For us the codewords are binary vectors of length n, X ∈ {0, 1}ⁿ.
- Channel: Errors occur during transmission and the received symbols are y ∈ Y. The channel is modeled with P(Y|X).
- Decoding function: $g : \mathcal{Y} \to \mathcal{U}$. Then $\hat{u} = g(y)$. Decoding error if $\hat{u} \neq u$, where *u* transmitted codeword

The code is an (M, n) code with code rate $R = \frac{\log M}{n} = \frac{k}{n}$.

Discrete memoryless channel (DMC)

Definition

A discrete memoryless channel (DMC) is a system $(\mathcal{X}, P(y|x), \mathcal{Y})$, where

- input alphabet \mathcal{X}
- output alphabet ${\mathcal Y}$
- transition probability distribution P(y|x)

The channel is memoryless if the probability distribution is independent of previous input symbols.

Channel capacity

Definition

The information channel capacity of a discrete memoryless channel (DMC) is

$$C = \max_{p(x)} I(X; Y)$$

where the maximum is taken over all input distributions.

Theorem

For the DMC $(\mathcal{X}, P(y|x), \mathcal{Y})$, the channel capacity is bounded by

$$\mathsf{0} \leq \mathcal{C} \leq \min\{ \log |\mathcal{X}|, \log |\mathcal{Y}| \}$$

15

Information theory

Jointly typical

Definition

The set $A_{\varepsilon}(X, Y)$ of jointly typical sequences (x, y) of length *n* with respect to the distribution p(x, y) is the set length *n* sequences

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$
 and $\mathbf{y} = (y_1, y_2, \dots, y_n)$

such that

$$\left| -\frac{1}{n} \log p(\mathbf{x}) - H(X) \right| \le \varepsilon,$$
$$\left| -\frac{1}{n} \log p(\mathbf{y}) - H(Y) \right| \le \varepsilon,$$
$$\left| -\frac{1}{n} \log p(\mathbf{x}, \mathbf{y}) - H(X, Y) \right| \le \varepsilon$$

where $p(\mathbf{x}, \mathbf{y}) = \prod_i p(x_i, y_i)$.

Stefan Höst

Information theory

Jointly typical

Equivalent definition

Equivalently, the set $A_{\varepsilon}(X, Y)$ of jointly typical sequences (\mathbf{x}, \mathbf{y}) can be defined from

$$2^{-n(H(X)+\varepsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\varepsilon)}$$
$$2^{-n(H(Y)+\varepsilon)} \le p(\mathbf{y}) \le 2^{-n(H(Y)-\varepsilon)}$$
$$2^{-n(H(X,Y)+\varepsilon)} \le p(\mathbf{x}, \mathbf{y}) \le 2^{-n(H(X,Y)-\varepsilon)}$$

17

Stefan Höst

Information theory

Jointly typical—Properties

Theorem

Let (X, Y) be sequences of length n drawn iid according to $p(x, y) = \prod_i p(x_i, y_i)$. Then, for sufficiently large n, 1. $P((x, y) \in A_{\varepsilon}(X, Y)) \ge 1 - \varepsilon$

2.
$$(1-\varepsilon)2^{n(H(X,Y)-\varepsilon)} \leq |A_{\varepsilon}(X,Y))| \leq 2^{n(H(X,Y)+\varepsilon)}$$

3. If $(\tilde{\mathbf{X}}, \tilde{\mathbf{Y}})$ drawn from $p(\mathbf{x})p(\mathbf{y})$, i.e. $\tilde{\mathbf{X}}$ and $\tilde{\mathbf{Y}}$ are independent with the same marginals as $p(\mathbf{x}, \mathbf{y})$. Then

$$(1-\varepsilon)2^{-n(I(X;Y)+3\varepsilon)} \le P\Big((\widetilde{\boldsymbol{x}},\widetilde{\boldsymbol{y}}) \in A_{\varepsilon}(X,Y)\Big) \le 2^{-n(I(X;Y)-3\varepsilon)}$$

Channel coding theorem

Achievable code rate

A code rate is acheivable if there exists a $(2^{nR}, n)$ code such that the error probability can be made arbitrarily small, i.e.

$$P_{e} = P(g(\textbf{Y})
eq u_{i} | \textbf{X} = x(u_{i}))
ightarrow 0$$
, $n
ightarrow \infty$

Theorem (Channel Coding Theorem)

A code rate is achievable if and only if

$$R < C = \max_{p(x)} I(X; Y)$$

Information theory

Channel coding theorem

Meaning of Channel coding theorem

Consider a dicrete memoryless channel with information capacity *C* and code prestanda $(2^{nR}, n)$. Then

- If *R* < *C* it is possible to transmitt information with arbitrarily low error probability.
- If R > C it is not possible to achieve reliable communication.

Fano's lemma

Theorem

If U and \hat{U} are two stochastic variables over the same alphabet with M letters, and $P_e = P(U \neq \hat{U})$ is the error probability, then

 $h(P_e) + P_e \log(M-1) \ge H(U|\widehat{U})$

Channel with feedback

Definition

In a feedback channel a discrete memoryless channel is used, and the previously received symbol y_{i-1} is available at the encoder, i.e. the code symbol at time *i* is $x(u, y_{i-1})$.

Channel with feedback

Definition

In a feedback channel a discrete memoryless channel is used, and the previously received symbol Y_{i-1} is available at the encoder, i.e. the code symbol at time *i* is $x(u, y_{i-1})$.

Theorem

The capacity for a feedback channel is equal to the non-feedback channel,

$$C_{FB} = C = \max_{p(x)} I(X; Y)$$

