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Law of large numbers

Theorem (The weak law of large numbers)

Let X1,X2, . . . , ,Xn be i.i.d. random variables with expectation
E
[
X
]
. Then, the arithmetic mean converges (in probability) to the

expectation,
1
n ∑

i
Xi

p→ E
[
X
]

Stated differently, this means that for any ε > 0,

lim
n→∞

P
(∣∣∣1

n ∑
i

Xi − E
[
X
]∣∣∣< ε

)
= 1
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Fair die
Example

Consider n consecutive rolls with a fair die, giving the results vector
x = (x1, . . . , xn). Let yn = 1

n ∑i xi be the average.

n

yn = 1
n ∑i xi

E [X ] = 3.5
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Binary vector
Example

Consider a binary length 5 vector X = (X1,X2, . . . ,X5), where Xi

i.i.d. with p(1) = 2
3 . Let Y = ∑ Xi be the number of ones,

k PY (k) = (5
k)

2k

35

0 0.0041
1 0.0412
2 0.1646
3 0.3292
4 0.3292
5 0.1317 k

PY (k)

1 2 3 4 5

0.33
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Binary vector
Example (cont’d)

k

PY (k), n = 10

1 7 10

0.26

k

PY (k), n = 50

1 33 50

0.12

k

PY (k), n = 100

1 67 100

0.084

k

PY (k), n = 500

1 333 500

0.038
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AEP
(Asymptotic Equipartition Property)

Definition (AEP)

The set of ε-typical sequences Aε(X ) is the set of all n-dimensional
vectors x = (x1, x2, . . . , xn) such that∣∣∣−1

n
log p(x)− H(X )

∣∣∣ ≤ ε

AEP (Alternative definition)

The ε-typical sequences can definition as the set of vectors x such
that

2−n(H(X )+ε) ≤ p(x) ≤ 2−n(H(X )−ε)
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Binary vector
Example (cont’d)

Consider a binary 5-dimensional vector where p(1) = 2
3 . The

entropy is h(1/3) = 0.918. Let ε = 0.138 (15% of h(p)).
x p(x)

00000 0.0041
00001 0.0082
00010 0.0082
00011 0.0165
00100 0.0082
00101 0.0165
00110 0.0165
00111 0.0329 ?
01000 0.0082
01001 0.0165
01010 0.0165

x p(x)

01011 0.0329 ?
01100 0.0165
01101 0.0329 ?
01110 0.0329 ?
01111 0.0658 ?
10000 0.0082
10001 0.0165
10010 0.0165
10011 0.0329 ?
10100 0.0165
10101 0.0329 ?

x p(x)

10110 0.0329 ?
10111 0.0658 ?
11000 0.0165
11001 0.0329 ?
11010 0.0329 ?
11011 0.0658 ?
11100 0.0329 ?
11101 0.0658 ?
11110 0.0658 ?
11111 0.1317 0.

02
6
≤

p(
x
)
≤

0.
06

7
A

E
P

(?
):
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AEP

Theorem

For each ε there exists an integer n0 such that, for each n > n0,
Aε(X ) fulfills

1. P
(
x ∈ Aε(X )

)
≥ 1− ε

2. (1− ε)2n(H(X )−ε) ≤
∣∣Aε(X )

∣∣ ≤ 2n(H(X )+ε)
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Example

Example (cont’d)

Let ε = 0.046 (5% of h(1/3)).

n (1−ε)2n(H(X )−ε) ≤ |Aε(X )| ≤ 2n(H(X )+ε) |Aε(X )|
2n

100 1.17 · 1026 7.51 · 1027 1.05 · 1029 5.9 · 10−3

500 1.90 · 10131 9.10 · 10142 1.34 · 10145 2.78 · 10−8

1000 4.16 · 10262 1.00 · 10287 1.79 · 10290 9.38 · 10−15
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Example

Example (cont’d)

Let ε = 0.046 (5% of h(1/3)).

n P(x = 11 . . . 1) P(x ∈ Aε(X ))

100 2.4597 · 10−18 0.660

500 9.0027 · 10−89 0.971

1000 8.1048 · 10−177 0.998
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Source coding
A simple algorithm

Split the message space in two parts and encode separately

Non-typical sequences
< kn sequences
`x ≤ n log k + 2 bits

Typical sequences
≤ 2n(H(X )+ε) sequences
`x ≤ n(H(X ) + ε) + 2 bits

All sequences

Average codeword length for vector: E
[
`x
]
→ n

(
H(X ) + δ

)
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Source coding theorem

Theorem

Let X = X1 . . . Xn be a vector of n iid random variables with
probability function p(x). Then there exists a code which maps
sequences x of length n to binary sequences such that the
mapping is invertible and

L =
1
n

E
[
`x

]
≤ H(X ) + δ

where δ can be made arbitrarily small for sufficiently large n.
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Communication system

Source
Source
encoder

Channel
encoder

Channel
decoder

Source
decoder

Destination

Channel

X Y U

ÛŶX̂
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Channel coding

Channel
encoder

Channel
Channel
decoder

U X Y Û

• Information symbols: U ∈ U = {u1, u2, . . . , uM}
• Encoding function: x : U → X . Denote the codewords

xi = x(ui), i = 1, . . . M. For us the codewords are binary
vectors of length n, X ∈ {0, 1}n.

• Channel: Errors occur during transmission and the received
symbols are y ∈ Y . The channel is modeled with P(Y |X ).

• Decoding function: g : Y → U . Then û = g(y).
Decoding error if û 6= u, where u transmitted codeword

The code is an (M, n) code with code rate R = logM
n = k

n .
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Discrete memoryless channel (DMC)

Definition

A discrete memoryless channel (DMC) is a system
(X ,P(y |x),Y), where

• input alphabet X
• output alphabet Y
• transition probability distribution P(y |x)

The channel is memoryless if the probability distribution is
independent of previous input symbols.
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Channel capacity

Definition

The information channel capacity of a discrete memoryless
channel (DMC) is

C = max
p(x)

I(X ;Y )

where the maximum is taken over all input distributions.

Theorem

For the DMC (X ,P(y |x),Y), the channel capacity is bounded by

0 ≤ C ≤ min{log |X |, log |Y|}
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Jointly typical
Definition

The set Aε(X ,Y ) of jointly typical sequences (x , y) of length n with
respect to the distribution p(x , y) is the set length n sequences

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)

such that ∣∣∣−1
n
log p(x)− H(X )

∣∣∣ ≤ ε,∣∣∣−1
n
log p(y)− H(Y )

∣∣∣ ≤ ε,∣∣∣−1
n
log p(x , y)− H(X ,Y )

∣∣∣ ≤ ε

where p(x , y) = ∏i p(xi , yi).
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Jointly typical

Equivalent definition

Equivalently, the set Aε(X ,Y ) of jointly typical sequences (x , y)
can be defined from

2−n(H(X )+ε) ≤ p(x) ≤ 2−n(H(X )−ε)

2−n(H(Y )+ε) ≤ p(y) ≤ 2−n(H(Y )−ε)

2−n(H(X ,Y )+ε) ≤ p(x , y) ≤ 2−n(H(X ,Y )−ε)
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Jointly typical—Properties

Theorem

Let (X ,Y ) be sequences of length n drawn iid according to
p(x , y) = ∏i p(xi , yi). Then, for sufficiently large n,

1. P
(
(x , y) ∈ Aε(X ,Y )

)
≥ 1− ε

2. (1− ε)2n(H(X ,Y )−ε) ≤ |Aε(X ,Y ))| ≤ 2n(H(X ,Y )+ε)

3. If (X̃ , Ỹ ) drawn from p(x)p(y), i.e. X̃ and Ỹ are independent
with the same marginals as p(x , y). Then

(1− ε)2−n(I(X ;Y )+3ε) ≤ P
(
(x̃ , ỹ) ∈ Aε(X ,Y )

)
≤ 2−n(I(X ;Y )−3ε)
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Channel coding theorem

Achievable code rate

A code rate is acheivable if there exists a (2nR, n) code such that
the error probability can be made arbitrarily small, i.e.

Pe = P(g(Y ) 6= ui |X = x(ui))→ 0, n→ ∞

Theorem (Channel Coding Theorem)

A code rate is achievable if and only if

R < C = max
p(x)

I(X ;Y )
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Channel coding theorem

Meaning of Channel coding theorem

Consider a dicrete memoryless channel with information capacity
C and code prestanda (2nR, n). Then

• If R < C it is possible to transmitt information with arbitrarily
low error probability.

• If R > C it is not possible to achieve reliable communication.
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Fano’s lemma
Theorem

If U and Û are two stochastic variables over the same alphabet
with M letters, and Pe = P(U 6= Û) is the error probability, then

h(Pe) + Pe log(M − 1) ≥ H(U|Û)

Pe

h(Pe) + Pe log(M − 1)

log(M)

M−1
M

log(M − 1)

1
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Channel with feedback

Channel
encoder

Channel
Channel
decoder

Ui

Xi(Ui ,Yi−1)

Yi Ûi

Definition

In a feedback channel a discrete memoryless channel is used, and
the previously received symbol yi−1 is available at the encoder, i.e.
the code symbol at time i is x(u, yi−1).
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Channel with feedback

Definition

In a feedback channel a discrete memoryless channel is used, and
the previously received symbol Yi−1 is available at the encoder, i.e.
the code symbol at time i is x(u, yi−1).

Theorem

The capacity for a feedback channel is equal to the non-feedback
channel,

CFB = C = max
p(x)

I(X ;Y )
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