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Universal Source Coding

Huffman coding is optimal, what is the problem?

In the previous coding schemes (Huffman and Shannon-Fano)it
was assumed that

• The source statistics is known

• The source symbols are i.i.d.

Normally this is not the case.

How much can the source be compressed?
How can it be achieved?
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Random process
Definition (Random process)

A random process {Xi}n
i=1 is a sequence of random variables.

There can be an arbitrary dependence among the variables and
the process is characterized by the joint probability function

P
(
X1,X2, . . . ,Xn = x1, x2, . . . , xn

)
= p(x1, x2, . . . , xn), n = 1, 2, . . .

Definition (Stationary random process)

A random process is stationary if it is invariant in time,

P
(
X1, . . . ,Xn = x1, . . . , xn

)
= P

(
Xq+1, . . . ,Xq+n = x1, . . . , xn

)
for all time shifts q.
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Entropy rate
Definition

The entropy rate of a random process is defined as

H∞(X ) = lim
n→∞

1
n

H(X1X2 . . . Xn)

Define the alternative entropy rate for a random process as

H(X |X ∞) = lim
n→∞

H(Xn|X1X2 . . . Xn−1)

Theorem

The entropy rate and the alternative enropy rate are equivalent,

H∞(X ) = H(X |X ∞)
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Entropy rate

Theorem

For a stationary stochastic process the entropy rate is bounded by

0 ≤ H∞(X ) ≤ H(X ) ≤ log k

n

log k
H(X )

H∞(X )

H(Xn|X1 . . . Xn−1)
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Source coding for random processes
Optimal coding of process

Let X = (X1, . . . ,XN) be a vector of N symbols from a random
process. Use an optimal source code to encode the vector. Then

H(X1 . . . XN) ≤ L(N) ≤ H(X1 . . . XN) + 1

which gives the average codeword length per symbol, L = 1
N L(N),

1
N H(X1 . . . XN) ≤ L ≤ 1

N H(X1 . . . XN) +
1
N

In the limit as N → ∞ the optimal codeword length per symbol
becomes

lim
N→∞

L = H∞(X )
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Markov chain
Definition (Markov chain)

A Markov chain, or Markov process, is a random process with unit
memory,

P
(
xn|x1, . . . , xn−1

)
= P

(
xn|xn−1), for all xi

Definition (Stationary)

A Markov chain is stationary (time invariant) if the conditional
probabilities are independent of the time,

P
(
Xn = xa|Xn−1 = xb

)
= P

(
Xn+` = xa|Xn+`−1 = xb

)
for all relevant n, `, xa and xb.
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Markov chain

Theorem

For a Markov chain the joint probability function is

p(x1, x2, . . . , xn) =
n

∏
i=1

p(xi |x1, x2, . . . , xi−1)

=
n

∏
i=1

p(xi |xi−1)

= p(x1)p(x2|x1)p(x3|x2) · · · p(xn|xn−1)
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Markov chain characterization
Definition

A Markov chain is characterized by

• A state transition matrix

P =
[
p(xj |xi)

]
i,j∈{1,2,...,k} = [pij ]i,j∈{1,2,...,k}

where pij ≥ 0 and ∑j pij = 1.

• A finite set of states

X ∈ {x1, x2, . . . , xk}

where the state determines everything about the past.

The state transition graph describes the behaviour of the process
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Example

x1

x2x3

2/3

1/3

1/4

3/4

1/2

1/2

The state transition matrix

P =


1
3

2
3 0

1
4 0 3

4
1
2

1
2 0


The state space is

X ∈ {x1, x2, x3}
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Markov chain

Theorem

Given a Markov chain with k states, let the distribution for the
states at time n be

π(n) = (π
(n)
1 π

(n)
2 . . . π

(n)
k )

Then
π(n) = π(0)Pn

where π(0) is the initial distribution at time 0.
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Example, asymptotic distribution

P2 =
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3
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4 0 3

4
1
2

1
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3
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1
2

1
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 =
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P4 =
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20
72
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72
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72
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 =


1684
5184

1808
5184

1692
5184

1947
5184

2049
5184

1188
5184

1779
5184

1920
5184

1485
5184



P8 = · · · · · · · · · · · · · · · =

0.3485 0.3720 0.2794

0.3491 0.3721 0.2788

0.3489 0.3722 0.2789
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Markov chain

Theorem

Let π = (π1 . . . πk ) be an asymptotic distribution of the state
probabilities.Then

• ∑j πj = 1

• π is a stationary distribution, i.e. πP = π

• π is a unique stationary disribution for the source.
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Entropy rate of Markov chain

Theorem

For a stationary Markov chain with stationary distribution π and
transition matrix P, the entropy rate can be derived as

H∞(X ) = ∑
i

πiH(X2|X1 = xi)

where
H(X2|X1 = xi) = −∑

j
pij log pij

the entropy of row i in P.
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Example, Entropy rate

P =


1
3

2
3 0

1
4 0 3

4
1
2

1
2 0


Entropy per row:

H(X2|X1 = x1) = h( 1
3 )

H(X2|X1 = x2) = h( 1
4 )

H(X2|X1 = x3) = h( 1
2 ) = 1

Hence

H∞(X ) = 15
43h( 1

3 ) +
15
43h( 1

4 ) +
12
43h( 1

2 ) ≈ 0.9013 bit/source symbol
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Data processing lemma
X

Process A
Y

Process B
Z

Lemma (Data Processing Lemma)

If the random variables X, Y and Z form a Markov chain,
X → Y → Z, we have

I(X ;Z ) ≤ I(X ;Y )

I(X ;Z ) ≤ I(Y ;Z )

Conclusion

The amount of information can not increase by data processing,
neither pre nor post. It can only be transformed (or destroyed).
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