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Universal Source Coding

Huffman coding is optimal, what is the problem?
In the previous coding schemes (Huffman and Shannon-Fano)it
was assumed that
e The source statistics is known
e The source symbols are i.i.d.
Normally this is not the case.

How much can the source be compressed?
How can it be achieved?
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Random process

Definition (Random process)

A random process {X;}7_, is a sequence of random variables.
There can be an arbitrary dependence among the variables and
the process is characterized by the joint probability function

P(X1, Xz,...,. Xn=X1,X2, ..., Xn) = P(X1, X2, ..., Xn), N =1,2,...

Definition (Stationary random process)

A random process is stationary if it is invariant in time,

P(X1,...,Xn:X1,...,Xn) :P(Xq+1,...,Xq+n:X1,...,Xn)

)

for all time shifts q. )

- . LUND
Stefan Host Information theory 2 Uliversiy




Entropy rate

Definition
The entropy rate of a random process is defined as

1
Hoo(X) = lim —H(X; Xz ... Xp)

n—oo N

Define the alternative entropy rate for a random process as

H(X|X®) = lim H(Xa| X Xe ... Xo—1)

Theorem

The entropy rate and the alternative enropy rate are equivalent,

o (X) = H(X|X™) )

. . D
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Entropy rate

For a stationary stochastic process the entropy rate is bounded by

log k
H(X) 1

Heo (X)) 1

0 < Heo(X) < H(X) < logk

T
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Source coding for random processes

Optimal coding of process

Let X = (Xi,..., Xn) be a vector of N symbols from a random
process. Use an optimal source code to encode the vector. Then

H(Xp ... Xn) < LNV < H(Xp ... Xy) + 1
which gives the average codeword length per symbol, L = lNL(N),
YHX X)) S L< FHX . Xn) +

In the limit as N — oo the optimal codeword length per symbol
becomes
lim L= He(X)
N—o00 \
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Markov chain

Definition (Markov chain)

A Markov chain, or Markov process, is a random process with unit
memory,

P(Xa|X1, ..., Xn—1) = P(Xn|Xn—1), forall x;

Definition (Stationary)

A Markov chain is stationary (time invariant) if the conditional
probabilities are independent of the time,

P(Xn = Xg|Xp—1 = Xb) = P(Xn+z = Xa|Xp1o—1 = Xb)
for all relevant n, £, x; and xp. %

- : D
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Markov chain

Theorem
For a Markov chain the joint probability function is

= p(x1)p(x2|x1)p(xs|x2) - - - p(Xn|Xn—1)

3 : LUND
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Markov chain characterization

A Markov chain is characterized by

e A state transition matrix

P= [p(xl'|xf)]i,je{1,2 ,,,,, Ky [Pilijef1,2....k}

where pj > 0 and }; pj = 1.
o A finite set of states

Xe{x,x2, ..., Xk}

where the state determines everything about the past.

The state transition graph describes the behaviour of the process 5
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Example

1/3

The state transition matrix

P=
1/2 2/3
1/4
1/2 The state space is
X e {X1,X2,X3}
3/4

Stefan Host Information theory 9 uLNWEﬁR

= A= W=
O win
O pW O

=




Markov chain

Theorem

Given a Markov chain with k states, let the distribution for the
states at time n be

(n)

7 — (! (n) (n)

Ty ... ")

Then
7-[(”) = 7-['(0) Pn

where t(©) s the initial distribution at time 0.
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Example, asymptotic distribution

12 g\ /1 2 ¢ 20 16 36
3 8 3 8 72 72 72
2 1 3 1 3 _ 33 39

PP=12z 0 2]z 0 % =7z = O
11 o0/ \1 1 g 21 2 2
2 2 2 2 72 72 72
20 16 36 20 16 36 1684 1808 1692
72 72 72 72 72 72 5184 5184 5184

pt— |3 3 3B 39 _ | 1947 2049 1188
72 72 72 72 5184 5184 5184
21 24 27 21 24 27 1779 1920 1485
72 72 72 72 72 72 5184 5184 5184

0.3485 0.3720 0.2794
P8 — .. — 1 0.3491 0.3721
0.3489 0.3722
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Markov chain

Theorem

Let 7t = (711 ... 1) be an asymptotic distribution of the state
probabilities. Then

e 7T is a stationary distribution, i.e. TP = 7T
e 7T iS a unique stationary disribution for the source.

Stefan Host Information theory 12 uLNWERst



Entropy rate of Markov chain

Theorem

For a stationary Markov chain with stationary distribution rt and
transition matrix P, the entropy rate can be derived as

X) = ZTL’,‘H(X2|X1 = X,')

where

H(Xz| X1 = X)) = — ) _ pjlog pj
j

the entropy of row i in P.
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Example, Entropy rate

3 50
P=| 10 2
220
Entropy per row:
H(Xo| X1 = x1) = h(3})
H(X|Xi = x2) = h(})
H(X|Xi = x3) = h(3) = 1

Hence

Heo(X) = 330(3) + 3h(%) + 15h(}) ~ 0.9013 bit/source symb
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Data processing lemma

X Y V4
— Process A ProcessB ——

Y

Lemma (Data Processing Lemma)

If the random variables X, Y and Z form a Markov chain,
X =Y — Z, we have

Conclusion

The amount of information can not increase by data processing,
neither pre nor post. It can only be transformed (or destroyed).

Stefan Host Information theory 15 uLNWEﬁPv



