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Shannon’s model for a communication system
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Source coding
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Definition

A source code is a mapping from the random variable
X ∈ {x1, . . . , xk} to a vector of variable length `, y = (y1y2 . . . y`),
where yi ∈ ZD are drawn from a D-ary alphabet.

The length of the codeword corresponding to x is denote `x .

The efficiency of a code is shown by the average codeword length,

L = E [`x ] = ∑
x

p(x)`x
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Code classification

Definition

A code is said to be

• Non-singular if each source symbol is mapped to a distinct
code vector.

• Uniquely decodable if each sequence of source symbols is
mapped to a unique sequence of code symbols, i.e. the
mapping from source sequences is non-singular.

• Prefix (or instantaneous) if no codeword is a prefix of another
codeword.
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Code classification

Illustration of code classifiation

All codes

Non-singular codes

Uniquely decodable codes

Prefix codes
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Prefix codes

D-ary tree

• A D-ary tree is a tree where each node has either D or 0
branches.

• A full D-ary tree of depth n is a tree with depth n and Dn end
nodes (leaves).

Code representation

A prefix code can be represented in a D-ary tree, with branches
representing symbols. The depth of a path is the length of the
codeword.
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Optimal code

Definition

An optimal prefix code is a prefix code that minimizes the expected
codeword length

L = E [`x ] = ∑
x

p(x)`x

over all prefix codes for the same source alphabet.

Lemma (Path length lemma)

In a tree representation of a prefix code, the average codeword
length L = E [`x ] equals the sum of probabilities for the inner
nodes, incluing the root.
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Kraft inequality

Theorem (Kraft inequality)

There exists a D-ary prefix code with codeword lengths
`1, `2, . . . , `k if and only if

k

∑
i=1

D−`i ≤ 1
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Kraft inequality — Sketch of proof

Prefix code⇒ Ineqality

• Assume prefix code with maxx `x = `max

• Represent the codewords in a full tree with D`max leaves

• Remove subtree after codewords

⇒ ∑x D`x ≤ 1
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Kraft inequality — Sketch of proof

Ineqality⇒ Prefix code

• Assume ∑i D`xi ≤ 1 and `x1 ≤ `x2 ≤ · · · ≤ `xk = `max

• Start with full tree of depth D`max

• Put in shortest codewords and remove subtree after

• After j < k steps there are unused nodes left at depth D`max

At j = k − 1 there are at least one node left
⇒ The code can be constructed
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Kraft inequality

Theorem (McMillan inequality)

There exists a D-ary uniquely decodable code with codeword
lengths `1, `2, . . . , `k if and only if

k

∑
i=1

D−`i ≤ 1

Uniquely decodable codes will never be better than prefix codes.

Stefan Höst Information theory 10



Bounds on L

Theorem

The expected codeword length L = E [`x ] of a prefix code is lower
bounded by the entropy of the source, i.e.

L ≥ HD(X ) =
H(X )

logD

with equality if and only if the optimal codeword lengths
`x = − logD p(x) is used.

Theorem

For every random variable X there exists a D-ary prefix code such
that

L < HD(X ) + 1
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Optimal codeword length

Theorem

Given a random variable X, the average codeword length for an
optimal D-ary prefix code satisfies

HD(X ) ≤ L < HD(X ) + 1

with equality to the left if and only if `x = logD p(x).
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