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Entropy

Definition (Entropy)

The Entropy is the average self information for a random variable,

H(X ) = E
[
− log p(X =x)

]
= −∑

x
p(x) log p(x)

Theorem (Limit on the Entropy)

The entropy is a measure of the uncertainty of the outcome of the
random variable X. It is bounded by

0 ≤ H(X ) ≤ log k

Stefan Höst Information theory 1



Entropy
Definition (Joint Entropy)

The joint entropy is the entropy for a pair of random variables with
the joint distribution p(x , y),

H(X ,Y ) = EXY
[
− log p(X ,Y )

]
= −∑

x ,y
p(x , y) log p(x , y)

Definition (Conditional Entropy)

The conditional entropy is

H(X |Y ) = EXY
[
− log p(X |Y )

]
= −∑

x ,y
p(x , y) log p(x |y)
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Entropy

Theorem

A natural way to derive the conditional entropy is by

H(X |Y ) = ∑
y

H(X |Y = y)p(y)

where
H(X |Y = y) = −∑

x
p(x |y) log p(x |y)

is the entropy of X , conditioned on the event {Y = y}.
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Entropy
Theorem (Chain Rule)

The (first order) chain rule for entropies can be expressed as

H(X ,Y ) = H(X |Y ) + H(Y ) = H(Y |X ) + H(X )

Theorem (Chain Rule)

Let X1,X2, . . . ,Xn be an n-dimensional random variable drawn
according to p(x1, x2, . . . , xn). Then

H(X1,X2, . . . ,Xn) =
n

∑
i=1

H(Xi |X1, . . . ,Xi−1)
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Mutual information

Definition

The mutual information between the random variables X and Y is
defined as

I(X ;Y ) = EX ,Y
[
I(X = x ;Y = y)

]
= EX ,Y

[
log

p(X |Y )

p(X )

]
= ∑

x ,y
p(x , y) log

p(x |y)
p(x)
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Mutual information

Alternative definition

Alternatively, the mutual information can be defined as the relation
between the joint and the marginal probabilities,

I(X ;Y ) = EX ,Y

[
log

p(X ,Y )

p(X )p(Y )

]
= ∑

x ,y
p(x , y) log

p(x , y)
p(x)p(y)
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Mutual information

Properties of the mutual information

The mutual information between the random variables X and Y is
symmetric,

I(X ;Y ) = I(Y ;X )

It can be derived as

I(X ;Y ) = H(X ) + H(Y )− H(X ,Y )

= H(X )− H(X |Y )

= H(Y )− H(Y |X )
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Conditioned mutual information
Conditioned mutual information

The mutual information between the random variables X and Y ,
conditioned on Z , is

I(X ;Y |Z ) = EX ,Y ,Z

[
log

p(X ,Y |Z )
p(X |Z )p(Y |Z )

]
= ∑

x ,y ,z
p(x , y , z) log

p(x , y |z)
p(x |z)p(y |z)

It can be derived as

I(X ;Y |Z ) = H(X |Z ) + H(Y |Z )− H(X ,Y |Z )
= H(X |Z )− H(X |YZ ) = H(Y |Z )− H(Y |XZ )
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Relative Entropy

Definition

Given two probability distributions p(x) and q(x) for the same
sample set X . The relative entropy, or Kullback-Leibler
divergence, is defined as

D(p||q) = Ep

[
log

p(X )

q(X )

]
= ∑

x
p(x) log

p(x)
q(x)

The relative entropy is not symmetric, i.e. in general
D(p||q) 6= D(q||p).
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Information and Relative Entropy
Mutual information

The mutual information between X and Y can be seen as the
relative entropy from the independent marginal distributions to the
joint distribution

I(X ;Y ) = Ep(x ,y)

[
log

p(X ,Y )

p(X )p(Y )

]
= D

(
p(x , y)

∣∣∣∣p(x)p(y))

Entropy

Let X ∈ {x1, . . . , xk} and u(x) = 1/k be the uniform distribution.
Then

H(X ) = log k − D(p||u)
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Relative entropy
Theorem

Given two probability distributions p(x) and q(x) for the same
sample set X . Then the relative entropy is positive

D(p||q) ≥ 0

with equality if and only if p(x) = q(x) for all x.

Corollary

For any two random variables X and Y

I(X ;Y ) ≥ 0

with equality if and only if they are independent.
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Entropy
Theorem

For any two random variables X and Y

H(X |Y ) ≤ H(X )

with equality if and only if they are independent.

Theorem

Let X1,X2, . . . ,Xn be an n-dimensional random variable. Then

H(X1,X2, . . . ,Xn) ≤
n

∑
i=1

H(Xi)

with equality if and only if all Xi are independent.
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Jensen’s inequality
Definition (Convex function)

A function f (x) is convex in the interval [a, b] if, for any
x1, x2 ∈ [a, b] and any λ, 0 ≤ λ ≤ 1,

f
(
λx1 + (1− λ)x2

)
≤ λf (x1) + (1− λ)f (x2)

A function f (x) is concave in the interval [a, b] if −f (x) is convex in
the same interval.

Example

The functions x2 and ex are convex.

The functions −x2 and log x are concave.
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Jensen’s inequality

Theorem (Jensen’s inequality)

If f (x) is a convex function and X a random variable we have

E [f (X )] ≥ f (E [X ])

If f (x) is a concave function and X a random variable we have

E [f (X )] ≤ f (E [X ])
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Log-sum inequality

Theorem

Let a1, . . . , an and b1, . . . , bn be non-negative numbers. Then

∑
i

ai log
ai

bi
≥
(

∑
i

ai

)
log

∑i ai

∑i bi
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Covexity of information measures

Theorem (Relative entropy)

The relative entropy D(p||q) is a convex function in (p, q), i.e.

D
(

λp1 + (1− λ)p2

∣∣∣∣∣∣λq1 + (1− λ)q2

)
≤ λD(p1||q1) + (1− λ)D(p2||q2)
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Covexity of information measures

Let pλ(x) = λp1(x) + (1− λ)p2(x), 0 ≤ λ ≤ 1.

Theorem (Entropy)

The entropy H(X ) is a concave function, i.e.

Hpλ
(X ) ≥ λHp1(X ) + (1− λ)Hp2(X )
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Covexity of information measures

Theorem (Mutual information)

The mutual information I(X ;Y ) is

• concave in p(x) if p(y |x) is fixed, i.e.
Ipλ(x)(X ;Y ) ≥ λIp1(x)(X ;Y ) + (1− λ)Ip2(x)(X ;Y )

• convex in p(y |x) if p(x) is fixed, i.e.
Ipλ(y |x)(X ;Y ) ≤ λIp1(y |x)(X ;Y ) + (1− λ)Ip2(y |x)(X ;Y )

Stefan Höst Information theory 18


