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Differential Entropy

Definition

Let X be a real valued continuous random variable with probability
density function f(x). The differential entropy is

H(X) = E[—log {(X)] = — / F(x) log f(x)dx
R
where it is used that 0 log 0 = 0.

Sometimes the notation H(f) is also used in the literature.

Interpretation

Differential entropy can not be interpreted as uncertainty
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Differential entropy

Example

For a uniform distribution, f(x) = 1,0 < x < a, the differential

entropy is aq 1

H(X) = —/ L log ~dx = log a
0 a a

Note that H(X) < 0,0 < a < 1.

Example

For a Gaussian (Normal) distribution, A (u, o) the differential
entropy is

H(X) = — /IR £(x) log f(x)dx = %Iog(27re¢72)
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Translation and scaling

o LetY =X+, thenfy(y) = fx(y — ¢) and
H(Y) = H(X)
o LetY = aX, then fy(y) = 1fx(X) and

H(Y) = H(X) + loga
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Gaussian distribution

Lemma

Let g(x) be the distribution function of X ~ N (u, o). Let f(x) be
an arbitrary distribution function with the same mean, u, and
variance, o®. Then

| f010gg(x)ax = [ g(x)togg(x)ax
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Differential entropy

Definition
The joint differential entropy is the entropy for a 2-dimensional
random variables (X, Y) with the joint density function f(x, y),

H(X,Y)=E[—logf(X,Y)] = — /]R L [(x,y) log f(x, y)dxdy

Definition
The multi-dimensional joint differential entropy is the entropy for an

n-dimensional random vector (X, ..., X,) with the joint density
function f(x1, ..., Xn),
H(Xt, o Xo) = — / (31, X) log F(x1, - Xm) e, O
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Mutual information

Definition

The mutual information for a pair of continuous random variables
with joint probability density function f(x, y) is

I(X; Y) = E[Iog %] - /R f(x, y) log fz() {))dxdy

The mutual information can be derived as
I(X;Y)=HX)+H(Y)—H(X,Y)
= H(X) = H(X|Y) = H(Y) = H(Y|X)
where

H(X|Y) = — Jge f(x, y) log f(x|y)dxdy
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Relative entropy

Definition

The relative entropy for a pair of continuous random variables with
probability density functions f(x) and g(x) is

D(f||g) = E; [Iog ;(())(())] :/]Rf(x) log ;((’;)) dx

Theorem

The relative entropy is non-negative,

D(f|lg) >0

with equality if and only if f(x) = g(x), for all x. 5
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Mutual information

Corollary

The mutual information is non-negative, i.e.
I(X;Y)=H(X)—-H(X|Y) >0

with equality if and only if X and Y are independent.

Corollary

The entropy will not increase by considering side information, i.e.
H(X|Y) < H(X)

with equality if and only if X and Y are independent.
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Chain rule

Theorem
The chain rule for differential entropy states that

H(Xi, Xo, .., Xn) = Y H(Xi| X1, ..., Xi1)

i=1

Corollary

From the chain rule it follows

H(X1, Xz, ..., Xp) < Zn:H(Xi)

i=1
with equality iff X1, Xa, . .., X, are independent. Y
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Gaussian distribution

Theorem

The Gaussian distribution maximises the differential entropy over
all distributions with mean . and variance 2.
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Continuous vs Discrete

Theorem

Let X be continuous r.v. with density fx(x). Construct a discrete

version X%, where p(x2) = ,((XH)A fx(x)dx = Afx(xk)

Then, in general, lim H (X?) does not exist.
%

Theorem

Let X and Y be continuous r.v. with density fx(x) and fy(y).
Construct discrete versions X* and Y°, where p(x£') = Af(xk),
F(xk) = Lo 0F(xk, o), and p(y7) = 0f(ye), f(ye) = Lk AF (k. ye).
Then

lim I(X2,Y° I(X;Y 0
A:5—>0( ) ( )
D
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