

Information Theory Lecture 10 Differential Entropy

STEFAN HÖST

Differential Entropy

Definition

Let *X* be a real valued continuous random variable with probability density function f(x). The differential entropy is

$$H(X) = E\left[-\log f(X)\right] = -\int_{\mathbb{R}} f(x) \log f(x) dx$$

where it is used that $0 \log 0 = 0$.

Sometimes the notation H(f) is also used in the literature.

Interpretation

Differential entropy can not be interpreted as uncertainty

Stefan Höst

Information theory

Differential entropy

Example

For a uniform distribution, $f(x) = \frac{1}{a}$, $0 \le x \le a$, the differential entropy is $H(X) = -\int_{0}^{a} \frac{1}{a} \log \frac{1}{a} dx = \log a$

Note that H(X) < 0, 0 < a < 1.

Example

For a Gaussian (Normal) distribution, $\mathcal{N}(\mu,\sigma)$ the differential entropy is

$$H(X) = -\int_{\mathbb{R}} f(x) \log f(x) dx = \frac{1}{2} \log(2\pi e\sigma^2)$$

Translation and scaling

Theorem

• Let Y = X + c, then $f_Y(y) = f_X(y - c)$ and

H(Y) = H(X)

• Let $Y = \alpha X$, then $f_Y(y) = \frac{1}{\alpha} f_X(\frac{y}{\alpha})$ and

 $H(Y) = H(X) + \log \alpha$

Gaussian distribution

Lemma

Let g(x) be the distribution function of $X \sim \mathcal{N}(\mu, \sigma)$. Let f(x) be an arbitrary distribution function with the same mean, μ , and variance, σ^2 . Then

$$\int_{\mathbb{R}} f(x) \log g(x) dx = \int_{\mathbb{R}} g(x) \log g(x) dx$$

Δ

Differential entropy

Definition

The joint differential entropy is the entropy for a 2-dimensional random variables (X, Y) with the joint density function f(x, y),

$$H(X,Y) = E\left[-\log f(X,Y)\right] = -\int_{\mathbb{R}^2} f(x,y) \log f(x,y) dxdy$$

Definition

The multi-dimensional joint differential entropy is the entropy for an *n*-dimensional random vector (X_1, \ldots, X_n) with the joint density function $f(x_1, \ldots, x_n)$,

$$H(X_1,\ldots,X_n)=-\int_{\mathbb{R}^n}f(x_1,\ldots,x_n)\log f(x_1,\ldots,x_n)\,dx_1,\ldots,dx_n$$

Mutual information

Definition

The mutual information for a pair of continuous random variables with joint probability density function f(x, y) is

$$I(X;Y) = E\left[\log\frac{f(X,Y)}{f(X)f(Y)}\right] = \int_{\mathbb{R}^2} f(x,y)\log\frac{f(x,y)}{f(x)f(y)}dxdy$$

The mutual information can be derived as

$$I(X; Y) = H(X) + H(Y) - H(X, Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

where

$$H(X|Y) = -\int_{\mathbb{R}^2} f(x, y) \log f(x|y) dxdy$$

6

Stefan Höst

Information theory

Relative entropy

Definition

The relative entropy for a pair of continuous random variables with probability density functions f(x) and g(x) is

$$D(f||g) = E_f\left[\log\frac{f(X)}{g(X)}\right] = \int_{\mathbb{R}} f(x)\log\frac{f(x)}{g(x)}dx$$

Theorem

The relative entropy is non-negative,

 $D(f||g) \ge 0$

with equality if and only if f(x) = g(x), for all x.

Stefan Höst

Information theory

Mutual information

Corollary

The mutual information is non-negative, i.e.

$$I(X; Y) = H(X) - H(X|Y) \ge 0$$

with equality if and only if X and Y are independent.

Corollary

The entropy will not increase by considering side information, i.e.

 $H(X|Y) \leq H(X)$

with equality if and only if X and Y are independent.

Information theory

Chain rule

Theorem

The chain rule for differential entropy states that

$$H(X_1, X_2, ..., X_n) = \sum_{i=1}^n H(X_i | X_1, ..., X_{i-1})$$

Corollary

From the chain rule it follows

$$H(X_1, X_2, \ldots, X_n) \leq \sum_{i=1}^n H(X_i)$$

with equality iff X_1, X_2, \ldots, X_n are independent.

Stefan Höst

Information theory

Gaussian distribution

Theorem

The Gaussian distribution maximises the differential entropy over all distributions with mean μ and variance σ^2 .

Continuous vs Discrete

Theorem

Let X be continuous r.v. with density $f_X(x)$. Construct a discrete version X^{Δ} , where $p(x_k^{\Delta}) = \int_{k\Delta}^{(k+1)\Delta} f_X(x) dx = \Delta f_X(x_k)$

Then, in general, $\lim_{\Delta \to 0} H(X^{\Delta})$ does not exist.

Theorem

Let X and Y be continuous r.v. with density $f_X(x)$ and $f_Y(y)$. Construct discrete versions X^{Δ} and Y^{δ} , where $p(x_k^{\Delta}) = \Delta f(x_k)$, $f(x_k) = \sum_{\ell} \delta f(x_k, y_{\ell})$, and $p(y_{\ell}^{\delta}) = \delta f(y_{\ell})$, $f(y_{\ell}) = \sum_k \Delta f(x_k, y_{\ell})$. Then

$$\lim_{\Delta,\delta\to 0} I(X^{\Delta}, Y^{\delta}) = I(X; Y)$$

Stefan Höst