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Differential Entropy

Definition

Let X be a real valued continuous random variable with probability
density function f (x). The differential entropy is

H(X ) = E
[
− log f (X )

]
= −

∫
R

f (x) log f (x)dx

where it is used that 0 log 0 = 0.

Sometimes the notation H(f ) is also used in the literature.

Interpretation

Differential entropy can not be interpreted as uncertainty
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Differential entropy

Example

For a uniform distribution, f (x) = 1
a , 0 ≤ x ≤ a, the differential

entropy is
H(X ) = −

∫ a

0

1
a
log

1
a

dx = log a

Note that H(X ) < 0, 0 < a < 1.

Example

For a Gaussian (Normal) distribution, N (µ, σ) the differential
entropy is

H(X ) = −
∫

R
f (x) log f (x)dx =

1
2
log(2πeσ2)
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Translation and scaling

Theorem

• Let Y = X + c, then fY (y) = fX (y − c) and

H(Y ) = H(X )

• Let Y = αX, then fY (y) = 1
α fX (

y
α ) and

H(Y ) = H(X ) + log α
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Gaussian distribution

Lemma

Let g(x) be the distribution function of X ∼ N (µ, σ). Let f (x) be
an arbitrary distribution function with the same mean, µ, and
variance, σ2. Then∫

R
f (x) log g(x)dx =

∫
R

g(x) log g(x)dx
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Differential entropy
Definition

The joint differential entropy is the entropy for a 2-dimensional
random variables (X ,Y ) with the joint density function f (x , y),

H(X ,Y ) = E
[
− log f (X ,Y )

]
= −

∫
R2

f (x , y) log f (x , y)dxdy

Definition

The multi-dimensional joint differential entropy is the entropy for an
n-dimensional random vector (X1, . . . ,Xn) with the joint density
function f (x1, . . . , xn),

H(X1, . . . ,Xn) = −
∫

Rn
f (x1, . . . , xn) log f (x1, . . . , xn)dx1, . . . , dxn
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Mutual information
Definition

The mutual information for a pair of continuous random variables
with joint probability density function f (x , y) is

I(X ;Y ) = E
[
log

f (X ,Y )

f (X )f (Y )

]
=
∫

R2
f (x , y) log

f (x , y)
f (x)f (y)

dxdy

The mutual information can be derived as

I(X ;Y ) = H(X ) + H(Y )− H(X ,Y )

= H(X )− H(X |Y ) = H(Y )− H(Y |X )

where
H(X |Y ) = −

∫
R2 f (x , y) log f (x |y)dxdy
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Relative entropy
Definition

The relative entropy for a pair of continuous random variables with
probability density functions f (x) and g(x) is

D(f ||g) = Ef

[
log

f (X )

g(X )

]
=
∫

R
f (x) log

f (x)
g(x)

dx

Theorem

The relative entropy is non-negative,

D(f ||g) ≥ 0

with equality if and only if f (x) = g(x), for all x.
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Mutual information
Corollary

The mutual information is non-negative, i.e.

I(X ;Y ) = H(X )− H(X |Y ) ≥ 0

with equality if and only if X and Y are independent.

Corollary

The entropy will not increase by considering side information, i.e.

H(X |Y ) ≤ H(X )

with equality if and only if X and Y are independent.
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Chain rule
Theorem

The chain rule for differential entropy states that

H(X1,X2, . . . ,Xn) =
n

∑
i=1

H(Xi |X1, . . . ,Xi−1)

Corollary

From the chain rule it follows

H(X1,X2, . . . ,Xn) ≤
n

∑
i=1

H(Xi)

with equality iff X1,X2, . . . ,Xn are independent.
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Gaussian distribution

Theorem

The Gaussian distribution maximises the differential entropy over
all distributions with mean µ and variance σ2.
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Continuous vs Discrete
Theorem

Let X be continuous r.v. with density fX (x). Construct a discrete

version X ∆, where p(x∆
k ) =

∫ (k+1)∆
k∆ fX (x)dx = ∆fX (xk )

Then, in general, lim
∆→0

H(X ∆) does not exist.

Theorem

Let X and Y be continuous r.v. with density fX (x) and fY (y).
Construct discrete versions X ∆ and Y δ, where p(x∆

k ) = ∆f (xk ),
f (xk ) = ∑` δf (xk , y`), and p(y δ

` ) = δf (y`), f (y`) = ∑k ∆f (xk , y`).
Then

lim
∆,δ→0

I(X ∆,Y δ) = I(X ;Y )

Stefan Höst Information theory 11


