Problem 1

Ind	Codeword	Dict	Text
128	73	I_{\square}	I
129	32	${ }_{5} \mathrm{~W}$	-
130	119	wi	W
131	105	is	1
132	115	sh	s
133	104	h_{\bullet}	h
134	32	${ }_{\square} \mathrm{I}$	-
135	128	I ${ }_{\text {b }}$ W	$\mathrm{I}_{\text {- }}$
136	119	we	W
137	101	er	e
138	114	re	r
139	101	e_{5}	e
140	129	¢wh	${ }_{\square} \mathrm{W}$
141	104	ha	h
142	97	at	a
143	116	t_{\square}	t
144	134	${ }_{\square}$	${ }_{\square} \mathrm{I}$
145	129	¢wa	$\square_{\square} \mathrm{W}$
146	97	as	a

Ind	Codeword	Dict	Text
147	115	S_{5}	S
148	140	swhe	¢Wh
149	101	en	e
150	110	n_{\square}	n
151	144	${ }_{\square} \mathrm{I}_{5} \mathrm{~W}$	${ }_{\square} \mathrm{I}_{\square}$
152	130	wis	wi
153	132	she	sh
154	101	ed	e
155	100	d_{\bullet}	d
156	151		${ }_{\square} \mathrm{I} \mathrm{L}^{\mathrm{W}}$
157	137	ere	er
158	139	e ${ }_{\text {匕 }}$ W	$\mathrm{e}_{\text {匕 }}$
159	119	wh	w
160	141	hat	ha
161	143	$\mathrm{t}_{\mathrm{L}} \mathrm{I}$	$\mathrm{t}_{\text {L }}$
162	128	$\mathrm{I}_{\square} \mathrm{a}$	I_{\square}
163	97	am	a
164	109	m.	m
165	46	.	.

Problem 2

Both X and Y are uniformly distributed with probability functions

$$
p_{X}(k)=\frac{1}{5}, \quad k=1, \ldots, 5 \text { and } p_{Y}(k)=\frac{1}{8}, \quad k=1, \ldots, 8
$$

Then $p_{Z_{a}}(k)$ is described by the convolution of $p_{X}(k)$ and $p_{Y}(k)$. Since the uniform distribution is symmetric $-Y$ has the probability function

$$
p_{-Y}(k)=\frac{1}{8}, \quad k=-8, \ldots,-1
$$

and $P_{Z_{b}}(k)$ is described by the convolution of $p_{X}(k)$ and $p_{-Y}(k)$. Finally $p_{Z_{c}}(k)$ is obtained by folding the negativ axis on to the positiv for $p_{Z_{b}}(k)$. These distributions are shown in Figure 2.1.

Alternatively, the distributions can be derived by first considering tables of the functions, as shown below, and then counting the number of occurances. This will of cource give the same probabilities as shown in Figure 2.1.

Z_{a}	1	2	3	4	5	6	7	8																				
1	2	3	4	5	6	7	8	9	Z_{b}	1	2	3	4	5	6	7	8		Z_{c}	1	2	3	4	5	6	7	8	
2	3	4	5	6	7	8	9	10		2	1	-1	-2	-3	-4	-5	-6	-7		1	0	1	2	3	4	5	6	7
3	4	5	6	7	8	9	10	11		3	2	1	0	-2	-3	-4	-5	-6		2	1	0	1	2	3	4	5	6
4	5	6	7	8	9	10	11	12		4	3	2	1	0	-1	-3	-4	-5		3	2	1	0	1	2	3	4	5
5	6	7	8	9	10	11	12	13		5	4	3	2	1	0	-1	-2	-3		4	3	2	1	0	1	2	3	4

The entropies are

$$
\begin{aligned}
H\left(Z_{a}\right) & =3.4232 \text { bit } \\
H\left(Z_{b}\right) & =3.4232 \text { bit } \\
H\left(Z_{c}\right) & =2.7681 \text { bit }
\end{aligned}
$$

Figure 2.1: Probability functions for Z_{a}, Z_{b} and Z_{c}.

Problem 3

The state transition matrix is given by

$$
P=\left(\begin{array}{cccccc}
0 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 0 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 0 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 0 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 0 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 0
\end{array}\right)
$$

(a) Since $\left(\frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6}\right) P=\left(\begin{array}{llll}\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ 6 & \frac{1}{6}\end{array}\right)$ the steady state distribution is given by

$$
\pi=\left(\begin{array}{llllll}
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6}
\end{array}\right)
$$

That gives that without any knowledge about the previous symbols, the entropy is

$$
H(\pi)=\log 6=1+\log 3=2.58 \text { bit }
$$

(b) At the steady state solution $H\left(X_{1} \mid X_{0}=j\right)=H\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right)=\log 5$. Then,

$$
H_{\infty}(X)=\sum_{x} \pi_{x} H\left(X_{1} \mid X_{0}=x\right)=\log 5=2.32 \text { bit }
$$

(c) Starting at state $X_{0}=j$ gives the same distribution, up to rearangments, for all j. So fixing $X_{0}=1$ gives the probability for the state at time n, i.e. X_{n}, conditioned on starting in $X_{0}=1$ is $P\left(X_{n} \mid X_{0}=1\right)=\left(\begin{array}{lll}100000\end{array}\right) P^{n}$, and the corresponding entropy is $H\left((100000) P^{n}\right)$. Plotted as a function of n (using e.g. MATLAB) gives Figure 3.1. It is clearly seen that the distribution quickly approaches the asymptotic distribution (which equals the staeady state distribution).

Figure 3.1: $H\left(P\left(X_{n} \mid X_{0}=1\right)\right)$ as a function of n.

Problem 4

(a)

$P(Y \mid X)$	Y			
	0	1	2	3
0	$1-\varepsilon$	ε	0	0
$\times 1$	ε	$1-2 \varepsilon$	ε	0
X 2	0	ε	$1-2 \varepsilon$	\mathcal{E}
3	0	0	ε	$1-\varepsilon$

X
 Y
(b) With $p(x)=\frac{1}{4}$ the joint probability is $p(x, y)=\frac{1}{4} p(y \mid x)$ and, consequently,

$$
p(y)=\sum_{x} p(x, y)= \begin{cases}\frac{1}{4}(1-\varepsilon)+\frac{1}{4} \varepsilon=\frac{1}{4}, & y=0,3 \\ \frac{1}{4}(1-2 \varepsilon)+2 \frac{1}{4} \varepsilon=\frac{1}{4}, & y=1,2\end{cases}
$$

That is, $H(Y)=\log 4=2$. Then,

$$
\begin{aligned}
H(Y \mid X) & \left.=\sum_{x} H(Y \mid X=x) P(X=x)=2 \frac{1}{4} H(1-\varepsilon), \varepsilon\right)+2 \frac{1}{4} H(1-2 \varepsilon, \varepsilon, \varepsilon) \\
& =\frac{1}{2} h(\varepsilon)+\frac{1}{2}(h(2 \varepsilon)+2 \varepsilon \underbrace{h\left(\frac{\varepsilon}{2 \varepsilon}\right)}_{=1})=\frac{1}{2} h(\varepsilon)+\frac{1}{2} h(2 \varepsilon)+\varepsilon
\end{aligned}
$$

where in the third equality it is used that $H(\alpha, \beta, \gamma)=h(\alpha)+(1-\alpha) h\left(\frac{\beta}{1-\alpha}\right)$, see Problem 3.14. The mutual information then becomes

$$
I(X ; Y)=H(Y)-H(Y \mid X)=2-\frac{1}{2} h(\varepsilon)-\frac{1}{2} h(2 \varepsilon)-\varepsilon
$$

In Figure 4.1 the mutual information is plotted as a function of ε.

Figure 4.1: $I(X ; Y)$ as a function of ε.

Problem 5

Th parameters used in the problem are $P=1000 \mathrm{~mW}$ and $W_{\Delta}=1 \mathrm{MHz}$. Since $\frac{N_{0, i}}{\left|G_{i}\right|^{2}}$ is given in $\mathrm{dBm} / \mathrm{Hz}$ it has to be converted to linear scale as

$$
\frac{N_{0, i}}{\left|G_{i}\right|^{2}}=10^{\frac{\left[N_{0, i} /\left.\left|G_{i}\right|\right|^{2}\right]_{d B}}{10}} \quad[\mathrm{~mW} / \mathrm{Hz}]
$$

The specification that a PAM system should work at $P_{e}=10^{-6}$ means the SNR gap is set to $\Gamma=$ $9 \mathrm{~dB}=7.94$.
(a) The estimated bit rate for sub-channel i is

$$
R_{b, i}=W_{\Delta} \log \left(1+\frac{\left|G_{i}\right|^{2} P_{i}}{W_{\Delta} N_{0, i} \Gamma}\right)=W_{\Delta} \log \left(1+\frac{P_{i}}{\frac{N_{0, i}}{\left|G_{i}\right|^{2}} W_{\Delta} \Gamma}\right)
$$

where P_{i} is the power used in channel i. Since the sub-channels are supposed to be independent the total bit rate is $R_{b}=\sum_{i} R_{b, i}$, which should be maximised when $\sum_{i} P_{i}=P$. Assign an optimisation function

$$
J=\sum_{i=1}^{10} W_{\Delta} \log \left(1+\frac{P_{i}}{\frac{N_{0, i}}{\left|G_{i}\right|^{2}} W_{\Delta} \Gamma}\right)+\lambda\left(\sum_{i=1}^{10} P_{i}-P\right)
$$

By setting the derivative equal zero, $\frac{\partial}{\partial P_{j}} J=0$, gives

$$
P_{j}+\frac{N_{0, j}}{\left|G_{j}\right|^{2}} W_{\Delta} \Gamma=-\frac{W_{\Delta}}{\lambda \ln 2}=W_{\Delta} B \quad \Rightarrow \quad P_{j}=W_{\Delta}\left(B-\frac{N_{0, j}}{\left|G_{j}\right|^{2}} \Gamma\right)
$$

With Khun-Tucker optimisation this gives

$$
\left\{\begin{array}{l}
P_{j}=W_{\Delta}\left(B-\frac{N_{0, j}}{\left|G_{j}\right|^{2}} \Gamma\right)^{+} \\
\sum_{j} P_{j}=P
\end{array}\right.
$$

which is the water-filling procedure.
(b) As a first attempt, distribute the power on all sub-channels,

$$
\sum_{j} P_{j}=\sum_{j} W_{\Delta}\left(B-\frac{N_{0, j}}{\left|G_{j}\right|^{2}} \Gamma\right)=W_{\Delta}\left(10 B-\Gamma \sum_{j} \frac{N_{0, j}}{\left|G_{j}\right|^{2}}\right)=P
$$

Rewriting gives an expression for B as

$$
B=\frac{P}{10 W_{\Delta}}+\frac{\Gamma}{10} \sum_{j} \frac{N_{0, j}}{\left|G_{j}\right|^{2}}=2.85 \cdot 10^{-4} \mathrm{~mW} / \mathrm{Hz}=-35.45 \mathrm{dBm} / \mathrm{Hz}
$$

With this the first itaration P_{j} can be derived as

$$
P_{j}=(245,-113,159,185,-216,235,34,34,235,185) \mathrm{mW}
$$

Here it is seen that sub-channels 2 and 5 have negative power and have to set to zero. This will affect the nioise levels on the remaining sub-channels, and the power distribution must be restarted. With eight sub-channels left the corresponding calculations give

$$
B=\frac{P}{8 W_{\Delta}}+\frac{\Gamma}{8} \sum_{j \neq 2,5} \frac{N_{0, j}}{\left|G_{j}\right|^{2}}=2.44 \cdot 10^{-4} \mathrm{~mW} / \mathrm{Hz}=-36.13 \mathrm{dBm} / \mathrm{Hz}
$$

and the power per sub-channel

$$
P_{j}=(204,0,118,144,0,212,-7,-7,194,144) \quad \mathrm{mW}
$$

Again two sub-channels have negative powers, 7 and 8 , and hve to be disconnected.
The third itaration gives the water filling level

$$
B=\frac{P}{6 W_{\Delta}}+\frac{\Gamma}{6} \sum_{j \neq 2,5,7,8} \frac{N_{0, j}}{\left|G_{j}\right|^{2}}=2.41 \cdot 10^{-4} \mathrm{~mW} / \mathrm{Hz}=-36.18 \mathrm{dBm} / \mathrm{Hz}
$$

which gives

$$
P_{j}=(201,0,115,141,0,210,0,0,191,141) \mathrm{mW}
$$

Since all used sub-channels have positive powers, we can continue to derive the corresponding bit rates,

$$
R_{b, j}=(2599,0,938,1270,0,2931,0,0,2267,1270) \quad \mathrm{kbps}
$$

and the total bit rate is $\sum_{j} R_{b, j}=11.28 \mathrm{Mbps}$ This can be compared with the case when the power is distributed equally in all the sub-channels, $P_{j}=100 \mathrm{~mW}$, which gives a total of 9.85 Mbps.
(c) With the coding gain $\gamma_{c}=3 \mathrm{~dB}$ the bit rate for the j th sub-chanel can be expressed as

$$
R_{b, j}=W_{\Delta} \log \left(1+\frac{P_{j} \gamma_{c}}{\frac{N_{0, j}}{\left|G_{j}\right|^{2}} W_{\Delta} \Gamma}\right)=W_{\Delta} \log \left(1+\frac{P_{j}}{\frac{N_{0, j}}{\left|G_{j}\right|^{2}} W_{\Delta} \Gamma_{e f f}}\right)
$$

where $\Gamma_{e f f}=\frac{\Gamma}{\gamma_{c}}$, or equivalently in dB scale $\Gamma_{e f f}=\Gamma-\gamma_{c}=6 \mathrm{~dB}$. That means the same optimisation as before can be used, but with $\Gamma=6 \mathrm{~dB}$. In the first itration

$$
\begin{aligned}
B & =1.93 \cdot 10^{-4} \mathrm{~mW} / \mathrm{Hz}=-37.15 \mathrm{dBm} / \mathrm{Hz} \\
P_{j} & =(173,-7,130,143,-59,177,67,67,168,143)
\end{aligned}
$$

which means that sub-channels 2 and 5 should not be used. Then, the second itaration gives

$$
\begin{aligned}
B & =1.85 \cdot 10^{-4} \mathrm{~mW} / \mathrm{Hz}=-37.34 \mathrm{dBm} / \mathrm{Hz} \\
P_{j} & =(165,0,121,134,0,169,59,59,159,134)
\end{aligned}
$$

which gives

$$
\begin{aligned}
R_{b, j} & =(3209,0,1548,1880,0,3541,551,551,2877,1880) \quad[\mathrm{kbps}] \\
R_{b} & =16.04 \mathrm{Mbps}
\end{aligned}
$$

Problem 6

(a) Consider the difference between $H(Q)$ and $H(P)$,

$$
\begin{aligned}
H(Q)-H(P) & =-q_{1} \log q_{1}-q_{2} \log q_{2}-\sum_{i=3}^{k} q_{i} \log q_{i}+\sum_{i=1}^{k} p_{i} \log p_{i} \\
& =-(p 1-\delta) \log q_{1}-\left(p_{2}+\delta\right) \log q_{2}-\sum_{i=3}^{k} q_{i} \log q_{i}+\sum_{i=1}^{k} p_{i} \log p_{i} \\
& =\delta \underbrace{\delta \log \frac{q_{1}}{q_{2}}}_{\geqslant 0 \operatorname{since} q_{1} \geqslant q_{2}}-p_{1} \log q_{1}-p_{2} \log q_{2}-\sum_{i=3}^{k} q_{i} \log q_{i}+\sum_{i=1}^{k} p_{i} \log p_{i} \\
& \geqslant-\sum_{i=1}^{k} p_{i} \log q_{i}+\sum_{i=1}^{k} p_{i} \log p_{i}=\sum_{i=1}^{k} p_{i} \log \frac{p_{i}}{q_{i}}=D(p \| q) \geqslant 0
\end{aligned}
$$

(b) Use that $t \log t$ is a convex function to get

$$
\begin{aligned}
H(Q) & =-\sum_{i} q_{i} \log q_{i}=-\sum_{i} \underbrace{\sum_{j} a_{i j} p_{j} \log \sum_{j} a_{i j} p_{j}}_{\leqslant \sum_{j} a_{i j} p_{j} \log p_{j}} \\
& \geqslant-\sum_{i} \sum_{j} a_{i j} p_{j} \log p_{j}=-\sum_{j}^{\sum_{i} a_{i j} p_{j} \log p_{j}=-\sum_{j} p_{j} \log p_{j}=H(P)}
\end{aligned}
$$

where the inequality follows from Jensen's inequality with $a_{i j}$ as probabilities over j.
(c) The equation system in the hint can be written as

$$
\binom{p_{1}-\delta}{p_{2}+\delta}=\left(\begin{array}{ll}
p_{1} & p_{2} \\
p_{2} & p_{1}
\end{array}\right)\binom{\alpha}{\beta} \Rightarrow\binom{\alpha}{\beta}=\left(\begin{array}{ll}
p_{1} & p_{2} \\
p_{2} & p_{1}
\end{array}\right)^{-1}\binom{p_{1}-\delta}{p_{2}+\delta}=\binom{\frac{p_{1}-p_{2}-\delta}{p_{1}-p_{2}}}{\frac{\delta}{p_{1}-p_{2}}}
$$

This gives the A matrix as

$$
A=\left(\begin{array}{lllll}
\alpha & \beta & & & \\
\beta & \alpha & & & \\
& & 1 & & \\
& & & \ddots & \\
& & & & 1
\end{array}\right)
$$

