LUND
UNIVERSITY
Electrical and Information Technology

Home Exam in Information Theory, EITN45

May 27 - June 2, 2013

- Write your name on each paper.
- Start a new solution on a new sheet of paper. Use only one side of the paper.
- Solutions should clearly show the line of reasoning.
- Program code, e.g. MATLAB, python or C/C++, used for derivations should be handed in as a complement to the solution. However, the solutions should be fully understandable without the code. Normal command line calculations, e.g. entropy, is not required to hand in.

Good luck!

Problem 1

Consider the channels A and B in Figure 1.1.

Figure 1.1: Two channels.
(a) For channel A assign $P(X=1)=P(X=2)=p$ and give an expression for the mutual information $I(X ; Y)$
(b) For channel B assign $P(X=1)=p$ and give an expression for the mutual information $I(X ; Y)$
(c) For each of the channels A and B, show that the capacity is

$$
C=\max _{p} I(X ; Y)=1
$$

What is the maximising p ? (May be different for the two channels)
(d) The result in c is obvious when you think of it. Explain why.

Problem 2

Consider the German sentence ${ }^{1}$

Ich esse essig essig esse ich im salat

Compress it using the LZ78 algorithm. Give the codewords both in numeric form and binary form, the compression ratio and the dictionary represented in a tree. Assume that characters are encoded with the ASCII table using eight bits each.

[^0]
Problem 3

Consider two urns, numbered 1 and 2. Urn 1 has four white balls and three black balls, while Urn 2 has three white balls and seven black. Choose one of the urns with equal probability, and draw one ball from it. Let X be the colour of that ball and Y the number of the chosen urn.
(a) Derive the uncertainty of X.
(b) How much information is obtained about Y when observing X ?
(c) Introduce a third urn, Urn 3, with only one white ball (and no black). Redo problems a and b for this case.

Problem 4

A unary source code is a mapping from the positive integers to binary vectors such that the codeword for the integer n consists of $n-1$ zeros followed by a one, i.e.

n	y
1	1
2	01
3	001
4	0001
5	00001
\vdots	\vdots

This is clearly a prefix code since there is only one 1 , located at the end of each codeword.

On Wikipedia (https://en.wikipedia.org/wiki/Unary_coding) ${ }^{2}$ it is stated that the unary code is optimal for the probability function

$$
P(n)=(k-1) k^{-n}, \quad n=1,2, \ldots \text { and } k \geqslant 1.61803 \ldots
$$

The aim of this problem is to clarify if this is correct. However, we will only consider probability functions where k is an integer, i.e. $k=2,3,4, \ldots$. Your answers below should be clearly motivated.
(a) Is it true that for any integer $k \geqslant 2$ the function $P(n)=(k-1) k^{-n}, n=1,2,3, \ldots$ is a probability function?
(b) Is it true that for $k=2$ the unary code is optimal? What is the average codeword length?
(c) Is it true that for any integer $k=2,3,4, \ldots$ the unary code is optimal? What is the average codeword length?

[^1]
Problem 5

Consider the case when two discrete memoryless channels are used in parallel, see Figure 5.1. That is, the transmitted symbol X is transmitted over two channels and the receiver gets two symbols, Y and Z. The two channels work independently in parallel, i.e. $P(y \mid x)$ and $P(z \mid x)$ are independent distributions, and hence, $P(y \mid x, z)=P(y \mid x)$ and $P(z \mid x, y)=P(z \mid x)$). However, it does not mean Y and Z are independent, so in general $p(y \mid z) \neq p(y)$.

Figure 5.1: Two DMC used in parallel.
(a) Consider the information about X the receiver gets by observing Y and Z, and show that

$$
I(X ; Y, Z)=I(X ; Y)+I(X ; Z)-I(Y ; Z)
$$

(b) Consider the case when both the channels are BSC with error probability p, and let $P(X=0)=P(X=1)=\frac{1}{2}$. Use the result in a and show that

$$
\begin{aligned}
I(X ; Y, Z) & =H(Y, Z)-2 h(p) \\
& =p^{2} \log \frac{2 p^{2}}{p^{2}+(1-p)^{2}}+(1-p)^{2} \log \frac{2(1-p)^{2}}{p^{2}+(1-p)^{2}} \\
& =\left(p^{2}+(1-p)^{2}\right)\left(1-h\left(\frac{p^{2}}{p^{2}+(1-p)^{2}}\right)\right)
\end{aligned}
$$

Hint: Consider the distribution $P(y, z \mid x)$ to get $P(y, z)$.
One interpretation of this channel is that the transmitted symbol is sent twice over the BSC.

[^0]: ${ }^{1}$ With a comma between the two essig, it means: I eat vinegar, vinegar I eat in salad.

[^1]: ${ }^{2}$ You can of course not use any formulas found on Wikipedia, or elsewhere on Internet, without proving it.

