Problem 1

The channel probabilities are given as $P(Y \mid X)$. With $P(X=0)=p$ and $P(X=1)=1-p$, the probabilities for Y are given by

$$
P(Y=y)= \begin{cases}\alpha p+\alpha(1-p)=\alpha, & y=0 \tag{1.1}\\ \beta p+\beta(1-p)=\beta, & y=\Delta \\ \gamma p+\gamma(1-p)=\gamma, & y=1\end{cases}
$$

Hence,

$$
\begin{aligned}
H(Y) & =H(\alpha, \beta, \gamma) \\
H(Y \mid X) & =\sum_{x} H(Y \mid X=x) P(X=x)=H(\alpha, \beta, \gamma) p+H(\alpha, \beta, \gamma)(1-p)=H(\alpha, \beta, \gamma)
\end{aligned}
$$

and the mutual information is $I(X ; Y)=H(Y)-H(Y \mid X)=0$. Since that imply $I(X ; Y)=$ $H(X)-H(X \mid Y)=0$ it means $H(X)=H(X \mid Y)$.

An alternativ solution is to observe that (1.1) means $P(Y=y)=P(Y=y \mid X=x)$, which gives

$$
P(X=x) P(Y=y)=P(X=x) P(Y=y \mid X=x)=P(X=x, Y=y)
$$

i.e. X and Y are independent and hence, $H(X)=H(X \mid Y)$.

Problem 2

Let X be the outcome of the die and Y the number of heads tossed with the coin. Then $P(X=n)=1 / 6$ for $n=1, \ldots, 6$ and $P(Y=k \mid X=n)=\binom{n}{k} 2^{-n}, k=0, \ldots, n$. Thus the joint probability is $P(X=n, Y=k)=\frac{\binom{n}{k}}{6 \cdot 2^{n}}$, which is shown in the matrix

$$
P=\left(\begin{array}{ccccccc}
1 / 12 & 1 / 12 & 0 & 0 & 0 & 0 & 0 \\
1 / 24 & 1 / 12 & 1 / 24 & 0 & 0 & 0 & 0 \\
1 / 48 & 1 / 16 & 1 / 16 & 1 / 48 & 0 & 0 & 0 \\
1 / 96 & 1 / 24 & 1 / 16 & 1 / 24 & 1 / 96 & 0 & 0 \\
1 / 192 & 5 / 192 & 5 / 96 & 5 / 96 & 5 / 192 & 1 / 192 & 0 \\
1 / 384 & 1 / 64 & 5 / 128 & 5 / 96 & 5 / 128 & 1 / 64 & 1 / 384
\end{array}\right)
$$

The probability for the number of heads can be derived as

$$
P(Y=k)=\sum_{n} P(X=n, Y=k)=\left(\begin{array}{llllll}
21 / 128 & 5 / 16 & 33 / 128 & 1 / 6 & 29 / 384 & 1 / 48
\end{array} 1 / 384\right)
$$

for $k=0, \ldots, 6$. With these the entropies can be derived as $H(X)=\log 6 \approx 2.5850, H(Y) \approx$ 2.3074 and $H(X, Y) \approx 4.3972$. Hence, the mutual information is $I(X ; Y)=H(X)+H(Y)-$ $H(X Y) \approx 0.4952$.

Problem 3

The bandwidth for each channel is $W_{\Delta}=2 \mathrm{MHz}$ and the channel parameters expressed in linear scale becomes

$$
\begin{aligned}
\left|H_{i}\right|^{2} & =\left(\begin{array}{lllll}
0.1 & 0.05 & 0.025 & 0.0126 & 0.0063
\end{array}\right) \\
N_{0} & =10^{-15} \mathrm{~mW} / \mathrm{Hz} \\
P & =10^{-6} \mathrm{~mW}
\end{aligned}
$$

(a) To maximise the capacity the power is distributed according to the water-filling argument

$$
P_{i}=\left(B-\frac{N_{0} W_{\Delta}}{\left|H_{i}\right|^{2}}\right)^{+} \quad \text { where } \quad \sum_{i} P_{i}=P
$$

Summing the powers gives

$$
\sum_{i} P_{i}=5 B-\sum_{i} \frac{N_{0} W_{\Delta}}{\left|H_{i}\right|^{2}}=P
$$

which gives

$$
B=\frac{1}{5}\left(P+\frac{N_{0} W_{\Delta}}{\left|H_{i}\right|^{2}}\right)=3.23 \cdot 10^{-7}
$$

and

$$
P_{i}=\left(\begin{array}{lllll}
0.3031 & 0.2832 & 0.2435 & 0.1642 & 0.0061
\end{array}\right) \cdot 10^{-6}
$$

The capacity is given by

$$
\begin{aligned}
C & =\sum_{i} W_{\Delta} \log \left(1+\frac{P_{i}\left|H_{i}\right|^{2}}{N_{0} W_{\Delta}}\right) \\
& =8.0276+6.0344+4.0413+2.0481+0.055=20.2 \mathrm{Mbps}
\end{aligned}
$$

(b) For an M-PAM communication scheme we can estimate the total bit rate by

$$
R=\sum_{i} R_{i}=\sum_{i} W_{\Delta} \log \left(1+\frac{P_{i}\left|H_{i}\right|^{2}}{\Gamma N_{0} W_{\Delta}}\right) \quad \text { where } \quad \sum_{i} P_{i}=P
$$

and $\Gamma=9 \mathrm{~dB}=10^{0.9}=7.94$. To maximise the bit rate the following maximisation function is used

$$
J=\sum_{i} W_{\Delta} \log \left(1+\frac{P_{i}\left|H_{i}\right|^{2}}{\Gamma N_{0} W_{\Delta}}\right)+\lambda\left(\sum_{i} P_{i}-P\right)
$$

By setting the derivative equal to zero, the water-filling function can be derived as

$$
P_{i}=\left(B-\frac{\Gamma N_{0} W_{\Delta}}{\left|H_{i}\right|^{2}}\right)^{+}
$$

After succesiv cancelations of sub-channels with negative power, i.e. sub-channel 4 and 5 , the optimal power distribution is given by

$$
P_{i}=\left(\begin{array}{lllll}
0.5439 & 0.3858 & 0.0703 & 0 & 0
\end{array}\right)
$$

and the corresponding bit rate

$$
R=\sum_{i} W_{\Delta} \log \left(1+\frac{P_{i}\left|H_{i}\right|^{2}}{\Gamma N_{0} W_{\Delta}}\right)=4.2905+2.2973+0.3042=6.89 \mathrm{Mbps}
$$

Problem 4

The transition probability matrix is

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 \\
0 & 2 / 3 & 1 / 3
\end{array}\right)
$$

(a) Through the equation system $\boldsymbol{\pi} P=\pi$ and $\sum_{i} \pi_{i}=1$ the stationary distribution is given by $\boldsymbol{\pi}=\left(\begin{array}{lll}1 / 4 & 1 / 2 & 1 / 4\end{array}\right)$. The entropy rate is given by

$$
H_{\infty}(X)=\pi_{1} h\left(\frac{1}{3}\right)+\pi_{2} \log (3)+\pi_{3} h\left(\frac{1}{3}\right) \approx 1.2516 \mathrm{bit}
$$

(b) The sequence \boldsymbol{Y} is given by taking two steps at a time in the graph. That corresponds to the transition probability matrix

$$
P_{b}=P^{2}=\left(\begin{array}{lll}
1 / 3 & 4 / 9 & 2 / 9 \\
2 / 9 & 5 / 9 & 2 / 9 \\
2 / 9 & 4 / 9 & 1 / 3
\end{array}\right)
$$

Deriving the stationary distribution, by observing that $\boldsymbol{\pi} P^{2}=\pi P$, will give the same equation as in a), i.e. $\boldsymbol{\pi}=\left(\begin{array}{ll}1 / 4 & 1 / 2 \quad 1 / 4\end{array}\right)$. The entropy rate is given by

$$
H_{\infty}(X)=\pi_{1} H\left(\frac{1}{3}, \frac{4}{9}, \frac{2}{9}\right)+\pi_{2} H\left(\frac{2}{9}, \frac{5}{9}, \frac{2}{9}\right)+\pi_{3} H\left(\frac{2}{9}, \frac{4}{9}, \frac{1}{3}\right) \approx 1.4830 \mathrm{bit}
$$

Problem 5

(a) To form the new code replace x_{k} and x_{l} be replaced by their parent node z_{m} with probability $q_{m}=p_{k}+p_{l}$. The new code tree has the leaf probabilities $\tilde{p}_{j}, j=1, \ldots n-1$, which are equal to $p_{i}, i \neq k, l$ and q_{m}. Then

$$
\begin{aligned}
H(X) & =-\sum_{i=1}^{n} p_{i} \log p_{i}=-\sum_{i \neq k, l} p_{i} \log p_{i}-p_{k} \log p_{k}-p_{l} \log p_{l} \\
& =-\sum_{j=1}^{n-1} \tilde{p}_{j} \log \tilde{p}_{j}+q_{m} \log q_{m}-p_{k} \log p_{k}-p_{l} \log p_{l} \\
& =H(\tilde{X})+\left(p_{k}+p_{l}\right)\left(\frac{p_{k}+p_{l}}{p_{k}+p_{l}} \log \left(p_{k}+p_{l}\right)-\frac{p_{k}}{p_{k}+p_{l}} \log p_{k}-\frac{p_{l}}{p_{k}+p_{l}} \log p_{l}\right) \\
& =H(\tilde{X})+\left(p_{k}+p_{l}\right)\left(-\frac{p_{k}}{p_{k}+p_{l}} \log \frac{p_{k}}{p_{k}+p_{l}}-\frac{p_{l}}{p_{k}+p_{l}} \log \frac{p_{l}}{p_{k}+p_{l}}\right) \\
& =H(\tilde{X})+\left(p_{k}+p_{l}\right) h\left(\frac{p_{k}}{p_{k}+p_{l}}\right)
\end{aligned}
$$

and, hence $\alpha=\frac{p_{k}}{p_{k}+p_{l}}$.
(b) From the structure of the formula in a), assume that $H(X)=\sum_{i=1}^{n-1} q_{i} h\left(\alpha_{i}\right)$, where α_{i} is the probability for choosing branch 0 from the inner node z_{i}. That is, If z_{k} and z_{l} are the children nodes of z_{i}, then $\alpha_{i}=\frac{q_{k}}{q_{k}+q_{l}}$.

- For $n=2$ there is one inner node, the root with $q_{1}=1$ and two leaves with probabilities p_{1} and p_{2}. Then $\alpha_{1}=p_{k}$ and, hence, $H(X)=h\left(p_{1}\right)=q_{1} h\left(\alpha_{1}\right)$. That means our assumption is true for this case.
- For $n>2$, assume the formula is true for a tree with $n-1$ leaves. Then construct a code according to a),

$$
\sum_{i=1}^{n-1} q_{i} h\left(\alpha_{i}\right)=\sum_{i \neq m} q_{i} h\left(\alpha_{i}\right)+q_{m} h\left(\alpha_{m}\right)=H(\tilde{X})\left(p_{k}+p_{l}\right) h\left(\frac{p_{k}}{p_{k}+p_{l}}\right)=H(X)
$$

(c) From the path length lemma and the fact that the entropy lower bounds the codeword length, we get

$$
L=\sum_{i=1}^{n-1} q_{i} \geqslant H(X)=\sum_{i=1}^{n-1} q_{i} h\left(\alpha_{i}\right)
$$

with equality if and only if $h\left(\alpha_{i}\right)=1$ for all i. This is equivalent to saying that $\alpha_{i}=\frac{1}{2}$, for all i. Since the leaf node x_{i} uniquely determines the path from the root to the leaf, $z_{i_{0}}, z_{i_{1}}, \ldots, z_{i_{\ell-1}}$, where $z_{i_{0}}$ is the root node, we get

$$
\begin{aligned}
p\left(x_{i}\right) & =P\left(z_{i_{0}}, \ldots, z_{i_{\ell-1}}, x_{i}\right) \\
& =P\left(z_{i_{0}}\right) \prod_{j=1}^{\ell-1} P\left(z_{i_{j}} \mid z_{i_{0}}, \ldots, z_{i_{j-1}}\right) P\left(x_{i} \mid z_{i_{0}}, \ldots, z_{i_{\ell-1}}\right) \\
& =P\left(z_{i_{0}}\right) \prod_{j=1}^{\ell-1} P\left(z_{i_{j}} \mid z_{i_{j-1}}\right) P\left(x_{i} \mid z_{i_{\ell-1}}\right) \\
& =1 \prod_{j=1}^{\ell} \alpha_{i_{j}}=1 \prod_{j=1}^{\ell} \frac{1}{2}=\frac{1}{2^{\ell}}
\end{aligned}
$$

That is, to get $L=H(X)$ it is required that the leaf probabilities are powers of 2 . (This fact was also seen from the optimal codeword length, where $\log p_{i}$ must be an integer to fulfil the bound.)

