

Home Exam in Information Theory, EITN45

May 30 – June 6, 2016

Name:						
Id Number:						
Programme:						
Nbr of sheets: _						
	Mark w	ith a cros	s the pro	blems yo	u solved.	
		-	2	1		
	1	2	3	4	5	
	1	2	3	4	5	
	1	2	3	4	5	

Assessment protocol								
1 2	3	4	5	\sum	Grade			

Home Exam in Information Theory, EITN45

May 30 – June 6, 2016

- ▶ Problems shall be solved and handed in individually.
- ▶ Write your name on each paper.
- ► Start a new solution on a new sheet of paper. Use only one side of the paper.
- ► Solutions should clearly show the line of reasoning.
- ► Include the cover sheet when handing in the solutions.
- Program code, e.g. MATLAB, python or C/C++, used for derivations should be handed in as a complement to the solution. However, the solutions should be fully understandable without the code. Normal command line calculations, e.g. entropy, is not required to hand in.

Good luck!

Problem 1

For the discrete memoryless channel (DMC) in Figure 1.1 show that H(X|Y) = H(X), for any distribution on *X*.

Figure 1.1: A DMC.

(10p)

Problem 2

Consider a fair die and a fair coin. The die is rolled once to determine the number of tosses with the coin. That is, if the die shows 1 the coin is tossed once, if the die shows 2 it is tossed twice, and so on. By observing the number of heads tossed by the coin, how much information do you get about the outcome of the die?

(10p)

Problem 3

Consider a channel with bandwidth W = 10 MHz that is split into five frequency divided channels with equal bandwidth. The attenuation in the five sub-bands are

$$|H_i|^2 \in \{-10, -13, -16, -19, -22\}$$
 [dB]

The noise level can be considered to be flat with level $N_0 = -150 \text{ dBm/Hz}$ over the entire bandwidth. The total allowed power consumption is P = -60 dBm.

- (a) What is the total capacity for the channel?
- (b) Give an estimate of the maximum total bit rate when uncoded M-PAM signalling is used in each sub-band. Set the error probability to $P_e = 10^{-6}$.

(5+5=10p)

Problem 4

In Figure 4.1 a three state Markov source is shown. The output from the source, denoted $\mathbf{X} = \dots, X_0, X_1, X_2, X_3, \dots$, is a sequence of the letters *A*, *B* and *C*. Assume that the sequence was started a long time ago.

Figure 4.1: A Markov chain.

- (a) Derive the entropy rate for the sequence *X*
- (b) To form a new sequence, *Y*, every second letter of *X* is removed. For example the sequence

$$\boldsymbol{X} = \dots, A, B, C, C, B, A, A, B, A, B, C, \dots$$

will result in

 $\mathbf{Y} = \ldots, A, C, B, A, A, C, \ldots$

Derive the entropy rate for the sequence *Y*.

(5+5=10p)

Problem 5

Let *X* be a random variable with *n* outcomes, $x_i, i = 1, ..., n$, and the non-zero probabilities $p_i, i = 1, ..., n$. Construct a binary prefix code for it and write the codewords w_i in a tree. Let the n - 1 inner nodes in the tree, including the root, be denoted $z_i, i = 1, ..., n - 1$ and have the probabilities $q_i, i = 1, ..., n - 1$.

(a) Construct a new random variable \tilde{X} by replacing two sibling leaves in the tree, x_k and x_l , by their parent node, thus reducing the set of outcomes to n - 1. Show that the entropy of X can be expressed in terms of the entropy of \tilde{X} as

$$H(X) = H(\tilde{X}) + (p_k + p_l)h(\alpha)$$

and determine the probability α .

(b) Find an expression for the entropy H(X) based on the inner node probabilities q_i and the binary entropy function.

Hint: For an inner node z_i , define α_i as the probability for the next bit in the codeword to be a 0, conditioned on z_i , i.e. $\alpha_i = P(\text{next bit } 0|\text{inner node } z_i)$.

(c) Find a condition for an optimal code to have L = H(X), based on the conditional probabilities α_i defined in the hint of b). What does it mean for the probabilities for the outcomes of *X*?

(3+4+3=10p)