UNIVERSITY
Electrical and Information Technology

Home Exam in Information Theory, EITN45

May 30 - June 6, 2016

Name: \qquad
Id Number: \qquad

Programme: \qquad

Nbr of sheets: \qquad

Mark with a cross the problems you solved.					
1	2	3	4	5	

Signature: \qquad

| Assessment protocol | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 | \sum | Grade |
| | | | | | | |
| | | | | | | |

LUND
UNIVERSITY

Home Exam in Information Theory, EITN45

May 30 - June 6, 2016

- Problems shall be solved and handed in individually.
- Write your name on each paper.
- Start a new solution on a new sheet of paper. Use only one side of the paper.
- Solutions should clearly show the line of reasoning.
- Include the cover sheet when handing in the solutions.
- Program code, e.g. MATLAB, python or C/C++, used for derivations should be handed in as a complement to the solution. However, the solutions should be fully understandable without the code. Normal command line calculations, e.g. entropy, is not required to hand in.

Good luck!

Problem 1

For the discrete memoryless channel (DMC) in Figure 1.1 show that $H(X \mid Y)=H(X)$, for any distribution on X.

Figure 1.1: A DMC.

Problem 2

Consider a fair die and a fair coin. The die is rolled once to determine the number of tosses with the coin. That is, if the die shows 1 the coin is tossed once, if the die shows 2 it is tossed twice, and so on. By observing the number of heads tossed by the coin, how much information do you get about the outcome of the die?

Problem 3

Consider a channel with bandwidth $W=10 \mathrm{MHz}$ that is split into five frequency divided channels with equal bandwidth. The attenuation in the five sub-bands are

$$
\left|H_{i}\right|^{2} \in\{-10,-13,-16,-19,-22\}[\mathrm{dB}]
$$

The noise level can be considered to be flat with level $N_{0}=-150 \mathrm{dBm} / \mathrm{Hz}$ over the entire bandwidth. The total allowed power consumption is $P=-60 \mathrm{dBm}$.
(a) What is the total capacity for the channel?
(b) Give an estimate of the maximum total bit rate when uncoded M-PAM signalling is used in each sub-band. Set the error probability to $P_{e}=10^{-6}$.

Problem 4

In Figure 4.1 a three state Markov source is shown. The output from the source, denoted $\boldsymbol{X}=\ldots, X_{0}, X_{1}, X_{2}, X_{3}, \ldots$, is a sequence of the letters A, B and C. Assume that the sequence was started a long time ago.

Figure 4.1: A Markov chain.
(a) Derive the entropy rate for the sequence \boldsymbol{X}
(b) To form a new sequence, \boldsymbol{Y}, every second letter of \boldsymbol{X} is removed. For example the sequence

$$
\boldsymbol{X}=\ldots, A, B, C, C, B, A, A, B, A, B, C, \ldots
$$

will result in

$$
\boldsymbol{Y}=\ldots, A, C, B, A, A, C, \ldots
$$

Derive the entropy rate for the sequence \boldsymbol{Y}.

Problem 5

Let X be a random variable with n outcomes, $x_{i}, i=1, \ldots, n$, and the non-zero probabilities $p_{i}, i=1, \ldots, n$. Construct a binary prefix code for it and write the codewords w_{i} in a tree. Let the $n-1$ inner nodes in the tree, including the root, be denoted $z_{i}, i=1, \ldots, n-1$ and have the probabilities $q_{i}, i=1, \ldots, n-1$.
(a) Construct a new random variable \tilde{X} by replacing two sibling leaves in the tree, x_{k} and x_{l}, by their parent node, thus reducing the set of outcomes to $n-1$. Show that the entropy of X can be expressed in terms of the entropy of \tilde{X} as

$$
H(X)=H(\tilde{X})+\left(p_{k}+p_{l}\right) h(\alpha)
$$

and determine the probability α.
(b) Find an expression for the entropy $H(X)$ based on the inner node probabilities q_{i} and the binary entropy function.
Hint: For an inner node z_{i}, define α_{i} as the probability for the next bit in the codeword to be a 0 , conditioned on z_{i}, i.e. $\alpha_{i}=P\left(\right.$ next bit $0 \mid$ inner node $\left.z_{i}\right)$.
(c) Find a condition for an optimal code to have $L=H(X)$, based on the conditional probabilities α_{i} defined in the hint of b$)$. What does it mean for the probabilities for the outcomes of X ?

