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11 Rate Distortion

In the previous chapters the aim is to have perfect reconstruction for source
coding and arbitrary small error probability in coding. This is the basis of the
source coding theorem and the channel coding theorem. However, in practical
system design this is not always the case.

For example in image compression or voice coding, it is affordable to have a
certain amount of losses in the reconstruction, as long as the perceived quality is
not affected. This is the idea behind lossy coding instead of lossless coding, like
Huffman coding or the LZ algorithms. The gain with allowing some distortion
to the original image is that the compression ratio can be made much better.
In image coding or video coding, algorithms like JPEG or MPEG are typical
examples.

In his 1948 paper [60] Shannon started the study on how to incorporate an al-
lowed distortion in the theory, but it was not until his paper in 1959 [61] for it
to matured. In this paper the rate-distortion function is defined and shown to
bound the compression capability in the same manner as the entropy does in
the lossless case.

11.1 Rate-distortion function

To start the study of rate-distortion it must first be determined what is meant
by distortion of a source. In Figure 11.1 a model for a source coding is depicted.
The source symbol is a vector of length n, X = X1, . . . Xn. This is encoded to
a length ` vector Y = Y1 . . . Y` which is then decoded back (reconstructed) to a
length n vector X̂ = X̂1, . . . X̂n. The codeword length ` is regarded as a random
variable and its expected value denoted L = E[`]. This is the same model as
used in the lossless case in Chapter 4. The difference is that the mapping from
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260 11. Rate Distortion

X to X̂ includes an allowance of a miss-match, i.e. in general they will not be
equal. The rate of the code is defined as

R =
L
n

(11.1)

This is the transmission rate and should not be confused with the compression
ratio used earlier, which is its inverse. For simplicity, assume that Y is a binary
vector.

X
Encoder

Y
Decoder

X̂

Figure 11.1: A communication model for introducing distortion.

To measure the introduced miss-match between the source symbol and the re-
constructed symbol a distortion measure is required. It is here assumed that the
distortion measure is additive, and can be written as

d(x, x̂) =
n

∑
i=1

d(xi, x̂i) (11.2)

where d(x, x̂) is the single letter distortion. Without loss of generality it can
be assumed that the minimum distortion is zero, minx̂ d(x, x̂) = 0, for all x.
There are several such measures but the two most well known are the Ham-
ming distortion and the squared distance. The first one is typically used for
discrete sources, especially for the binary case, while the second is mostly used
for continuous sources.

DEFINITION 11.1 The Hamming distortion between two discrete letters x and x̂
is

d(x, x̂) =

{
0, x = x̂
1, x 6= x̂

(11.3)

�

For the binary case the Hamming distortion can be written as

d(x, x̂) = x⊕ x̂ (11.4)

where ⊕ denotes addition modulo 2.
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11.1. Rate-distortion function 261

DEFINITION 11.2 The squared distance distortion between two variables x and x̂
is

d(x, x̂) = (x− x̂)2 (11.5)

�

In principle, all vector norms can be used as distortion measures, but for exam-
ple the maximum as d(x, x̂) = maxi |xi− x̂i| does not work with the assumption
of additive distortion measures. In the following, the derivations will be per-
formed for discrete sources, but in most cases it is straight forward to generalise
for continuous sources.

In the model for the lossy source coding scheme the distortion is introduced
in the encoder/decoder mapping. A mathematical counterpart of the decoder
is the probability for the reconstructed symbol X̂ conditioned on the source
symbol X, p(x̂|x). Then the distortion is modeled as a probabilistic mapping
between the inputs and outputs. From the assumption of additive distortion,
the average distortion over a vector of length n is

E
[
d(X, X̂)

]
= E

[ n

∑
i=1

d(Xi, X̂i)
]
=

n

∑
i=1

E
[
d(Xi, X̂i)

]
= nE

[
d(X, X̂)

]
(11.6)

By specifying a maximum distortion per symbol as δ the averaged distortion
should be bounded by E

[
d(X, X̂)

]
≤ nδ. The expected distortion is aver-

aged over the joint probability of the input sequence and the output sequence,
p(x, x̂) = p(x)p(x̂|x). Among those the input distortion is fixed by the source,
meaning that the requirement of a maximum symbol distortion gives a set of
conditional distributions as{

p(x̂|x) : E[d(X, X̂)] ≤ nδ
}

(11.7)

According to (11.6) this can for an additive distortion measure be written as{
p(x̂|x) : E[d(X, X̂)] ≤ δ

}
(11.8)

From the assumption that Y is a binary vector with average length L, the num-
ber of codewords is 2L = 2nR. Each code vector is decoded to an estimated
reconstruction vector X̂, and there are equally many possible reconstructed
vectors. Thus, the mutual information between the input and the output can
be bounded as

I(X; X̂) = H(X̂)− H(X̂|X) ≤ H(X̂) ≤ log 2nR = nR (11.9)

Equivalently, the rate can be bounded by the mutual information as

R ≥ 1
n

I(X; X̂) (11.10)



i
i

“InfoTheory” — 2015/3/3 — 10:55 — page 262 — #270 i
i

i
i

i
i

262 11. Rate Distortion

That is, to get a measure of the lowest possible rate, the mutual information
should be minimised with respect to a certain maximum distortion. Since the
maximum distortion level corresponds to a set of conditional distributions the
following definition is reasonable.

DEFINITION 11.3 The rate-distortion function for a source with output vector X
and a distortion measure d(x, x̂) is

R(δ) = min
p(x̂|x):E[d(X,X̂)]≤nδ

1
n

I(X; X̂) (11.11)

�

For an i.i.d. source, i.e. memoryless and equally distributed symbols, I(X; X̂) =
1
n I(X; X̂), together with (11.8) gives the following theorem.

THEOREM 11.1 The rate-distortion function for an i.i.d. source with output
variable X, and the distortion measure d(x, x̂) is

R(δ) = min
p(x̂|x):E[d(X,X̂)]≤δ

I(X; X̂) (11.12)

�

Before showing that R(δ) is the minimum average number of bits needed to
represent a source symbol when the acceptable distortion is δ, a closer look on
the actual derivation of the rate-distortion function and some of its properties
is in place. If δ1 ≤ δ2, the set of distributions {p(x̂|x) : E[d(X, X̂)] ≤ δ1} is a
subset of {p(x̂|x) : E[d(X, X̂)] ≤ δ2}, and

R(δ1) ≥ R(δ2) (11.13)

Hence, the rate-distortion function is a decreasing function in δ. To see how
the rate-distortion function can behave the next example derives it for a binary
source.

EXAMPLE 11.1 Consider a binary i.i.d. source with output symbol X ∈ {0, 1}
and p(X = 0) = p, where p ≤ 1/2. The aim of this example is to derive the rate-
distortion function for binary source and Hamming distortion of maximum
δ ≤ 1/2. To derive the rate-distortion function it is possible to apply standard
optimisation technology, but already in this simple case it becomes relatively
complex. Instead first note that E[d(x, x̂)] = P(X 6= X̂) = P(X ⊕ X̂ = 1) ≤ δ.
Then a lower bound on the mutual information can be derived as

I(X; X̂) = H(X)− H(X|X̂)

= h(p)− H(X⊕ X̂|X̂)

≥ h(p)− H(X⊕ X̂) ≥ h(p)− h(δ) (11.14)
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11.1. Rate-distortion function 263

For this lower bound to equal the rate-distortion function it is needed that
H(X|X̂) = h(δ), which gives the distribution

X
p(x|x̂) 0 1

0 1− δ δX̂
1 δ 1− δ

To get the distribution on X̂ assign P(X̂ = 0) = q,

p = P(X = 0)

= P(X = 0|X̂ = 0)P(X̂ = 0) + P(X = 0|X̂ = 1)P(X̂ = 1)
= (1− δ)q + δ(1− q) = (1− 2δ)q + δ (11.15)

or, equivalently,

q =
p− δ

1− 2δ
and 1− q =

1− p− δ

1− 2δ
(11.16)

For the case when 0 ≤ δ ≤ p ≤ 1/2 the probability of X̂ in (11.16) is bounded
by 0 ≤ q ≤ p.Thus, q and 1− q forms a distribution, and according to (11.14)
the rate-distortion function is R(δ) = h(p)− h(δ), 0 ≤ δ ≤ p.

For the case when p < δ ≤ 1/2 let P(X̂ = 1|X) = 1, q and 1− q does not form
a distribution since p− q < 0. Instead, always set the reconstructed symbol to
X̂ = 1 to get E[d(X, X̂)] = p ≤ δ and the distortion requirement is fulfilled.
Since X̂ = 1 independent of X the mutual information is I(X; X̂) = 0 which
gives R(δ) = 0. Summarising, for a binary i.i.d. source with P(X = 0) = p the
rate-distortion function is

R(δ) =

{
h(p)− h(δ), 0 ≤ δ ≤ p ≤ 1/2
0, p < δ ≤ 1/2

(11.17)

In Figure 11.2 this function is shown as a plot.

It is interesting to notice in Figure 11.2 that for no distortion, i.e. δ = 0, the rate-
distortion function equals the entropy for the source. Since the rate-distortion
function was defined as a lower bound on the transmission rate, and that the
symbols are binary, this is the amount of information in one source symbol.
Thus, it falls back to the lossless case and the source coding theorem as seen
before.

In the previous example, the relation between p(x), p(x|x̂) and p(x̂) is often
described by using a backward test channel from X̂ to X, as in Figure 11.3. It
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R(δ)

h(p)

δp 1/2

Figure 11.2: Rate-distortion function for a binary i.i.d. source.

0

1

0

1

1− δ

δ

δ

1− δ

X̂ X

q

1− q

p

1− p

Figure 11.3: Test channel for describing the distributions in Example 11.1.

should be noted that this channel does not have anything to do with transmis-
sion, it should be seen as a mathematical model showing the relations. It has its
purpose in giving an overview of the distributions involved in the problem.

It turns out that the rete-distortion function plotted in Figure 11.2 has a typical
behaviour. It starts at some value for δ = 0 decreases as a convex function down
until δ = δmax where R(δmax) = 0. As was seen in (11.13), the rate-distortion
function R(δ) is a decreasing function, but not necessarily strictly decreasing.
At some value δmax the allowed distortion is so large the reconstructed value X̂
can take a pre-determined value. Then it is not needed to transmit any code-
word and the rate becomes R(δmax) = 0. Since the rate-distortion function is
decreasing and the mutual information is non-negative, R(δ) = 0, δ ≥ δmax. To
determine δmax notice that since the output is pre-determined, the input X and
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11.1. Rate-distortion function 265

output X̂ are independent, giving p(x̂|x) = p(x̂), and

E
[
d(X, X̂)

]
= ∑

x,x̂
p(x, x̂)d(x, x̂)

= ∑
x,x̂

p(x)p(x̂|x)d(x, x̂)

= ∑̂
x

p(x̂)∑
x

p(x)d(x, x̂) (11.18)

To get the minimum, find an x̂ that minimises ∑x p(x)d(x, x̂) and set p(x̂) = 1
for this value, yielding

δmax = min
x̂

∑
x

p(x)d(x, x̂) (11.19)

To show that the rate-distortion function is convex let p1(x̂|x) and p2(x̂|x) de-
note the distributions achieving R(δ1) and R(δ2), i.e.

R(δ1) = Ip1(X; X̂) where Ep1

[
d(X, X̂)

]
≤ δ1 (11.20)

R(δ2) = Ip2(X; X̂) where Ep2

[
d(X, X̂)

]
≤ δ2 (11.21)

Consider the probability p(x̂|x) = α1 p1(x̂|x) + α2 p2(x̂|x) where α1 ≥ 0, α2 ≥ 0
and α1 + α2 = 1. Then

Ep
[
d(X, X̂)

]
= ∑

x,x̂
p(x)p(x̂|x)d(x, x̂)

= ∑
x,x̂

p(x)
(
α1 p1(x̂|x) + α2 p2(x̂|x)

)
d(x, x̂)

= α1 ∑
x,x̂

p(x)p1(x̂|x)d(x, x̂) + α2 ∑
x,x̂

p(x)p2(x̂|x)d(x, x̂)

= α1Ep1

[
d(X, X̂)

]
+ α1Ep1

[
d(X, X̂)

]
≤ α1δ1 + α2δ2 (11.22)

With δ = α1δ1 + α2δ2 this shows p(x̂|x) is one of the distribution in the minimi-
sation to reach R(δ). From the convexity of the mutual information

R(δ) ≤ Ip(X; X̂) ≤ α1 Ip1(X; X̂) + α2 Ip2(X; X̂)

= α1R(δ1) + α2R(δ2) (11.23)

which shows the convexity of the rate-distortion function. To summarise the
above reasoning the following theorem is stated.

THEOREM 11.2 The rate-distortion function R(δ) is a convex and decreasing
function. Furthermore, there exists a δmax = minx̂ ∑x p(x)d(x, x̂) such that
R(δ) = 0, δ ≥ δmax. �
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266 11. Rate Distortion

So far the rate-distortion function has been considered for discrete random vari-
ables, but the same definition makes sense for continuous variables. The same
theory as above will hold for this case. One important case is naturally the
Gaussian distribution, that is treated in the next example.

EXAMPLE 11.2 Consider an i.i.d. source where the output is a Gaussian vari-
able X ∼ N(0, σX). The reconstructed variable is X̂, where it is assumed that
E
[
X̂
]
= 0 is inherited from X. It is also assumed that the squared distance

distortion measure d(x, x̂) = (x− x̂)2 is used. Similar to the previous example
with the binary source, instead of going directly to standard optimisation meth-
ods, derive a lower bound for the mutual information and find a distribution
to fulfil it. Starting with the mutual information

I(X; X̂) = H(X)− H(X|X̂)

=
1
2

log(2πeσ2
X)− H(X− X̂|X̂)

≥ 1
2

log(2πeσ2
X)− H(X− X̂) (11.24)

From E
[
X̂
]
= 0 it follows that E

[
X − X̂

]
= 0 and V

[
X − X̂

]
= E

[
(X − X̂)2] =

E
[
d(X, X̂)

]
≤ δ. Define a random variable Z ∼ N(0, σZ) where σ2

Z = V
[
X− X̂

]
.

The rate-distortion function R(δ) is found by minimising I(X; X̂) over the dis-
tributions f (x̂|x) : σ2

Z ≤ δ. Since the Gaussian distribution maximises the dif-
ferential entropy H(X − X̂) ≤ 1

2 log(2πeσ2
Z) ≤

1
2 log(2πeδ). Hence, the bound

on the mutual information becomes

I(X; X̂) ≥ 1
2

log(2πeσ2
X)−

1
2

log(2πeδ) =
1
2

log
(σ2

X
δ

)
(11.25)

To see that this bound is actually tight, and equals R(δ), notice that X = X̂ +

Z and choose X̂ ∼ N
(
0,
√

σ2
X − δ

)
and Z ∼ N(0,

√
δ). Then X ∼ N(0, σX)

and the average distortion E
[
d(X, X̂)

]
= V

[
Z
]
= δ, meaning the minimisation

criteria is fulfilled. Hence, for 0 ≤ δ ≤ σ2
X the rate-distortion function is R(δ) =

1
2 log

( σ2
X
δ

)
. For δ ≥ σ2

X choose X̂ = 0 independently of X, implying I(X; X̂) = 0.
The minimisation criteria is fulfilled since E

[
(X − X̂)2] = E

[
X2] = σ2

X ≤ δ.
Summarising, the rate distortion function for an i.i.d. Gaussian source is

R(δ) =

 1
2 log

(
σ2

X
δ

)
, 0 ≤ δ ≤ σ2

X

0, δ ≥ σ2
X

(11.26)

The function is plotted in Figure 11.4.
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R(δ)

δσ2
x

Figure 11.4: Rate-distortion function for a Gaussian source.

The importance of the rate-distortion function was partly seen in (11.10) where
the rate is lower bounded by the mutual information. Together with the defi-
nition of the rate-distortion function it means for an i.i.d. source that R(δ) ≤
I(X; X̂) ≤ R. Hence, for any source code with average distortion E

[
d(X, X̂)

]
≤

δ the rate is bounded by R ≥ R(δ). The next theorem, called the rate-distortion
theorem, is the direct counterpart of the source coding theorem, stating also the
existence of such code.

THEOREM 11.3 Let X = X1X2 . . . Xn be generated by an i.i.d. source, X̂ =
X̂1X̂2 . . . X̂n the reconstructed sequence after source coding, and δ the allowed
distortion when the additive distortion measure d(x, x̂) is used. Then there
exists a source code with rate R if and only if

R ≥ R(δ) = min
p(x̂|x):E[d(X,X̂)]≤δ

I(X; X̂) (11.27)

�

Proof: The first part of the theorem, that the rate of a given code satisfying the
distortion requirement is bounded by the rate-distortion function, is already
shown above. The existence part, that for a given rate satisfying the bound
there exists a code, is a bit more tedious. The idea is to extend the concept of
jointly typical sequences and construct an encoding/decoding pair satisfying
the bound as the length of the source vector grows to infinity. As a start, a set
of distortion typical sequences is defined.

DEFINITION 11.4 The set of all distortion typical sequences Aε,δ(X, X̂) is the set
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of all pairs of n-dimensional vectors of i.i.d. variables

x = (x1, x2, . . . , xn) and x̂ = (x̂1, x̂2, . . . , x̂n) (11.28)

such that they are jointly typical (x, x̂) ∈ Aε(X, X̂), see Definition 6.5 on page
127, and∣∣∣ 1

n
d(x, x̂)− E

[
d(X, X̂)

]∣∣∣ ≤ ε (11.29)

where E
[
d(X, X̂)

]
≤ δ. �

From the weak law of large numbers it follows directly that

1
n

d(x, x̂) =
1
n

n

∑
i=1

d(xi, x̂i)
p→ E

[
d(X, X̂)

]
, n→ ∞ (11.30)

Following Theorem 6.7 it can be seen that there exists a set of integers ni, i =
1, 2, 3, 4, such that

P1 = P
(∣∣− 1

n log p(x)− H(X)
∣∣ > ε

)
<

ε

4
, n > n1 (11.31)

P2 = P
(∣∣− 1

n log p(ŷ)− H(X̂)
∣∣ > ε

)
<

ε

4
, n > n2 (11.32)

P3 = P
(∣∣− 1

n log p(x, x̂)− H(X, X̂)
∣∣ > ε

)
<

ε

4
, n > n3 (11.33)

P4 = P
(∣∣ 1

n d(x, x̂)− E
[
d(X, X̂)

]∣∣ > ε
)
<

ε

4
, n > n4 (11.34)

where E
[
d(X, X̂)

]
≤ δ. Then, for n > max{n1, n2, n3, n4}, by the use of union

bound,

P
(
(x, x̂) 6∈ Aε,δ(X, X̂)

)
< ε (11.35)

and, hence, for arbitrary ε > 0 and sufficiently large n

P
(
(x, x̂) ∈ Aε,δ(X, X̂)

)
≥ 1− ε (11.36)

From the alternative definition of typical sequences, Definition 6.6, the condi-
tional probability P(x̂|x) is bounded as

p(x̂|x) = p(x, x̂)
p(x)

= p(x̂)
p(x, x̂)

p(x)p(x̂)

≤ p(x̂)
2−n(H(X,X̂)−ε)

2−n(H(X)+ε)2−n(H(X̂)+ε)

= p(x̂)2n(H(X)+H(X̂)−H(X,X̂)+3ε) = p(x̂)2n(I(X;X̂)+3ε) (11.37)
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or, in other words,

p(x̂) ≥ p(x̂|x)2−n(I(X;X̂)+3ε) (11.38)

To continue the encoding and decoding procedure should be specified. Firstly,
let p∗(x̂|x) be a distribution that gives the rate-distortion function for distortion
δ, i.e.

p∗(x̂|x) = arg min
p(x̂|x):E[d(X,X̂)]≤δ

I(X; X̂) (11.39)

From the source statistics p(x) let

p∗(x̂) = ∑
x

p∗(x̂|x)p(x) (11.40)

Going back to Figure 11.1 a binary source vector x of length n is encoded to a
codeword y. The decoder maps the codeword to a reconstructed binary vector
x̂ of length n. When the rate is R, there are 2nR codewords y, and equally many
reconstructed vectors x̂. To define a decoding rule, generate 2nR reconstruction
vectors using the distribution

p∗(x̂) =
n

∏
i=1

p∗(x̂i) (11.41)

and pair these with the codewords. Denote the decoding function x̂ = g(y).
The encoding rule can be based on typical sequences. Given a vector x, find a
codeword y such that (x, g(y)) ∈ Aε,δ(X, X̂). If there are more than one pos-
sible codeword, choose one of them at random, and if there is no codeword
forming a typical pair with x choose y = 0. To see what this means for the av-
erage distortion first define the event that x and x̂ = g(y) are distortion typical
sequences,

Ey|x
{
(x, x̂) ∈ Aε,δ(X, X̂)

∣∣x̂ = g(y)
}

(11.42)

Then the event that x does not have any matching codeword becomes

Ee|x =
⋂
y

Ec
y|x (11.43)

Since the reconstructed vectors are generated i.i.d. the corresponding code-
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words are independent and

P(Ee|x) = P
(⋂

y
Ec

y|x
)

= ∏
y

P(Ec
y|x)

= ∏
y

(
1− P(Ey|x)

)
= ∏

y

(
1− ∑

x̂:(x,x̂)∈Aε,δ

p(x̂)
)

≤∏
y

(
1− ∑

x̂:(x,x̂)∈Aε,δ

p(x̂|x)2−n(I(X;X̂)+3ε)
)

=
(

1− ∑
x̂:(x,x̂)∈Aε,δ

p(x̂|x)2−n(I(X;X̂)+3ε)
)2nR

=
(

1− 2−n(I(X;X̂)+3ε) ∑
x̂:(x,x̂)∈Aε,δ

p(x̂|x)
)2nR

(11.44)

For 1− αx > 0, the IT-inequality gives ln(1− αx) ≤ −αx. Thus, (1− αx)M =

eM ln(1−αx) ≤ e−Mαx. Furthermore, for 0 ≤ x ≤ 1 it can be found that

e−Mαx ≤ 1− x + eMα (11.45)

To see this, first notice that the bound is clearly fulfilled for the end points x = 0
and x = 1. In the considered interval the left hand side, e−Mαx is convex, while
the right hand side is linearly decreasing with x, and, hence, the bound must
be fulfilled in between the end points as well. So, for 0 ≤ x ≤ 1, 0 ≤ α ≤ 1 and
M ≥ 0

(1− αx)M ≤ 1− x + eMα (11.46)

Applying to (11.44) and identifying M = 2nR, x = ∑ p(x̂|x) and α = 2−n(I(X;X̂)+3ε

gives

P(Ee|x) ≤ 1− ∑
x̂:(x,x̂)∈Aε,δ

p(x̂|x) + e2−n(I(X;X̂)+3ε)2nR
(11.47)

Averaging over all x gives the total probability of no match as

P(Ee) = ∑
x

p(x)P(Ee|x)

≤ 1− ∑
(x,x̂)∈Aε,δ

p(x)p(x̂|x) + e2n(R−I(X;X̂)−3ε)

= P
(
(x, x̂) 6∈ Aε,δ

)
+ e2n(R−R(δ)−3ε)

(11.48)
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where it is used that p(x̂|x) = p∗(x̂|x) to get I(X; X̂) = R(δ) in the last equality.
From the definition of Aε,δ(X, X̂), the term P

(
(x, x̂) 6∈ Aε,δ

)
≤ ε, where ε can be

chosen arbitrarily small. For R > R(δ) and small enough ε, the exponent in the
second term R− R(δ)− 3ε < 1, and the term will decrease towards zero as n
grows. Thus, with R > R(δ) it is possible to find a code where P(Ee) → 0 as
n→ ∞.

To derive the average distortion consider first the vector pairs (x, x̂) ∈ Aε,δ(X, X̂).
Then the distortion is bounded by

1
n

d(x, x̂) ≤ Ep∗
[
d(X, X̂)

]
+ ε ≤ δ + ε (11.49)

For the vector pairs not included in the set of distortion typical sequences the
distortion is bounded by 1

n d(x, x̂) ≤ δ̂, where δ̂ = max(x,x̂) d(x, x̂) is assumed to
be finite. Then the average distortion is

1
n

E
[
d(X, X̂)

]
≤ (δ + ε)P(Ec

e) + δ̂P(Ee)

≤ δ + ε + δ̂P(Ee) = δ + ε (11.50)

where ε = ε + δ̂P(Ee) can be chosen arbitrarily small, for large enough n. This
completes the proof. �

From the above rate-distortion theorem, the rate-distortion function plays the
same role for lossy source coding as the entropy does for lossless source cod-
ing. It is the limit for when it is possible to find a code. It does not, however,
say much on how to construct the code since the construction in the proof is not
practically implementable. Especially in the area of image, video and voice cod-
ing there are active research ongoing. Another, closely related, topic is quan-
tisation, which in its nature is both lossy and a compression. In Section 11.3
quantisation is treated more in detail, and in Section 11.4 transform coding is
described, including overviews of JPEG and MPEC coding.

As in the case of the source coding theorem the rate-distortion theorem can be
generalised to hold for stationary ergodic sources. The theory for this is out of
the scope for this text.

11.2 Limit for fix Pb

In the previous section it was shown that the rate-distortion function has the
same interpretation for lossy source coding as the entropy has for lossless source
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coding. In this section it will be seen that it also can be applied to the case of
channel coding when a certain bit error rate can be acceptable. For this purpose
the system model has to be expanded a bit to include the channel. In Figure 11.5
the source vector X = X1 . . . Xk is of length k and the code vector Y = Y1 . . . Yn
of length n, which gives the encoding rate R = k

n . After transmission over the
channel the received vector is Ŷ = Ŷ1 . . . Ŷn. Then the decoding outputs the
estimated vector as X̂ = X̂1 . . . X̂k.

X
Encoder

Y
Channel

Ŷ
Decoder

X̂

Figure 11.5: Block scheme with source and channel coding.

In Section 6.5 it was shown that reliable communication is possible if and only
if the rate is bounded by the capacity,

R < C = max
p(y)

I(Y; Ŷ) (11.51)

The term reliable communication refers to the case when the error probability af-
ter decoding can be made arbitrarily low. As with the case of lossless compared
to lossy compression this puts some hard restrictions on the system. In a real
system design a certain level of error probability can often be accepted. It is pos-
sible to treat this error level as an acceptable level of distortion at the decoder
output. The next theorem shows the relation between the channel capacity and
the rate-distortion function.

THEOREM 11.4 Given a source with probability distribution p(x), that is en-
coded with a rate R channel code before transmitted over a channel. If the
acceptable distortion is δ for a distortion measure d(x, x̂), such system can be
designed if and only if

R ≤ C
R(δ)

(11.52)

where C is the channel capacity for the channel and R(δ) the rate-distortion
function. �

In this text the proof of the theorem is omitted. Instead refer to [47].

The above theorem gives a relation between the channel capacity and the rate-
distortion function. In the next, the influence of the acceptable distortion on
the fundamental limit in Section 9.3 is treated. The limit Eb/N0 ≥ −1.59 dB
was derived by considering a binary equiprobable source where the bits are
encoded by a rate R channel code before the bits are transmitted over channel
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with signal to noise ratio Eb/N0. For reliable communication the limit on the
coding rate can be written as

R < C =
1
2

log
(

1 + 2R
Eb
N0

)
(11.53)

Assuming a binary source with equally distributed bits, and an acceptable bit
error probability Pb after decoding, the rate-distortion function is given by

R(Pb) = 1− h(Pb) (11.54)

Thus, the code rate bound becomes

R <
C

R(Pb)
=

1
2 log

(
1 + 2R Eb

N0

)
1− h(Pb)

(11.55)

Equivalently, rewritten as a bound on the signal to noise ratio for communica-
tion with a maximum bit error probability,

Eb
N0

>
22R(1−h(Pb)) − 1

2R
(11.56)

In Figure 11.6 the bound is plotted as the minimum signal to noise ratio for the
bit error probability. In the figure there are four plots, one each for the coding
rates R = 1/4, R = 1/2, R = 3/4, and the fourth, left most, curve is the case
when the encoding rate tends to zero. This is the case when the fundamental
limit is given, and the function becomes

lim
R→0

22R(1−h(Pb)) − 1
2R

= ln(2)(1− h(Pb)) (11.57)

which describes the lowest achievable Eb/N0 for an acceptable bit error prob-
ability of Pb at the receiver. As the bit error rate becomes smaller the entropy
function in the formula will close to zero and the curves fall down close to ver-
tically below about Pe = 10−3, where they equal the capacity limit for a given
rate.

11.3 Quantisation

In the next two sections two examples of lossy compression are considered.
Firstly it is quantisation that represents a continuous variable by a discrete, and
thus introducing disturbance, and secondly transform decoding. A well known
example of the latter is the image format JPEG that will be briefly described.
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Eb/N0 [dB]

Pe

-1.59-0.82 0 0.85

100

10−1

10−2

10−3

10−4

10−5

10−6

R→ 0

R = 1/4

R = 1/2

R = 3/4

compare with cc R=1/2, m=6

Figure 11.6: Plot of achievable SNR for certain bit error probability.

As said, quantisation maps a continuous variable to a discrete version for the
purpose of representing it with a finite length binary vector. An analog to dig-
ital converter (ADC) consist of sampling and quantisation, i.e. first mapping
from continuous time to discrete time and then from continuous amplitude to
discrete amplitude. This operation, as well as its inverse–digital to analog con-
version (DAC), is a common component in circuits operating with signals from
and to an outer unit, like a sensor of some kind.

In the sampling procedure, the optimal sampling frequency and the reconstruc-
tion formula is described by the sampling theorem used in Chapter 9. Ac-
cording to this, sampling and reconstruction does not introduce any distortion.
However, to be able to represent the sample values in a computer using finite
vectors they have to be quantised. This operation means representing a real
value by a discrete variable, and it is inevitable that information is destroyed,
and thus distortion introduced.

In this description a linear quantisation, as in Figure 11.7, is used. The input to
the quantiser is the continuous variable x. The mapping to the quantiser output
xQ is determined by a staircase function in the figure. In a linear quantiser the
size of the steps is constant, say ∆.

The term linear quantiser comes from the dashed line centered in the staircase
function in the figure, which is a linear function. For a non-linear quantiser
this center function can have more of an S-shape in either direction. This can
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x

xQ

∆

∆

M−1
2 ∆

−M−1
2 ∆

−M
2 ∆ M

2 ∆

Figure 11.7: A linear quantisation function.

be used to form the quantiser for the statistics of the continuous source and to
have different sizes of the quantisation intervals. However, in most practical
implementations a linear quantiser is used. If the statistics differ much from
the uniform distribution the quantiser can either be followed by a source code
like the Huffman code or preceded by a compensation filter.

In the figure a quantiser with M output levels is shown. Assuming a maximum
level of the output mapping of D = M−1

2 ∆, the granularity of the quantisation
becomes ∆ = 2D

M−1 . The mth output level then corresponds to the value

xQ(m) =
(

m∆− M− 1
2

∆
)
= (2m−M + 1)

∆
2

(11.58)

The mapping function shown in the figure is determined from finding an inte-
ger m such that

xQ(m)− ∆
2
≤ x < xQ(m)− ∆

2
(11.59)

then the output index is y = m. If the input value x can exceed the interval
xQ(0)− ∆

2 ≤ x < xQ(M− 1) + ∆
2 the limits should be

y =


m, xQ(m)− ∆

2 ≤ x < xQ(m)− ∆
2 , 1 ≤ m ≤ M− 2

0, x < xQ(0) + ∆
2

M− 1, x ≥ xQ(M− 1)− ∆
2

(11.60)
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From (11.58) this can equivalently be written as

y =


m, (2m−M)∆

2 ≤ x < (2m−M)∆
2 + ∆, for 1 ≤ m ≤ M− 2

0, x < (2−M)∆
2

M− 1, x ≥ (M− 2)∆
2

(11.61)

The output values from the quantiser can be represented by a finite length
binary vector. The price for representing a real value with finite levels is an
error introduced in the signal. In Figure 11.8 this error, defined as the dif-
ference x − xQ, is shown in the upper plot, and the corresponding distortion,
d(x, xQ) = (x− xQ)

2 in the lower plot.

x

x− xQ−M
2 ∆

M
2 ∆

x

d(x, xQ)

−M
2 ∆ M

2 ∆

Figure 11.8: The quantisation error, x − xQ, and distortion, d(x, xQ) = (x −
xQ)

2, for the linear quantisation function in Figure 11.7.

An estimate of the distortion introduced can be made by considering a uni-
formly distributed input signal, X ∼ U(−M ∆

2 , M ∆
2 ). Then all quantisation

levels will have uniformly distributed input with f (x) = 1
∆ , and deriving the

average distortion can be made with normalised xQ = 0,

E
[
(X− XQ(m))2|Y = m

]
=
∫ ∆/2

−∆/2
x2 1

∆
dx =

∆2

12
(11.62)

From the uniform assumption P(Y = m) = 1
M , and hence

E
[
(X− XQ)

2] = M−1

∑
m=0

1
M

∆2

12
=

∆2

12
(11.63)

When the quantised value is mapped to a vector of length k and M = 2k this
is equivalent to, E

[
(X− XQ(m))2] ≈ 22(k−1) D2

12 , where the approximation M−
1 ≈ M is used.

Viewing the distortion as a noise, it is convenient to consider the signal to quan-
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tisation noise ratio, SQNR. Since the signal has zero mean its variance is

E
[
X2] = ∫ M ∆

2

−M ∆
2

x2 1
M∆

dx =
(M∆)2

12
(11.64)

Hence the signal to quantisation noise is

SQNR =
E
[
X2]

E
[
(X− XQ)2

] = M2 = 22k (11.65)

Expressed in dB this means

SQNRdB = 2k · 10 log10 2 ≈ k · 6 dB (11.66)

i.e. the SQNR increases with 6 dB with each bit in the quantisation.

EXAMPLE 11.3 In the 4G mobile standard LTE, the downstream signals are
constructed with an OFDM modulation scheme. The modulation carries 2, 4
or 6 bits per tone and transmission. To get the maximum data rate of the sys-
tem a reasonable lower requirement on the signal to noise ratio is 30 dB. Then
the quality of the total channel, both quantisation and air channel, will not con-
strain the modulation due to the quantisation. If the air channel is good enough
for full speed, so will the combination with quantisation. From the approxima-
tion of 6 dB per bit, this corresponds to k = 5 b/sample.

There are six possible bandwidths for the communication link,

W ∈ {1.4, 3, 5, 10, 15, 20} [MHz] (11.67)

Following the Nyquist sampling rate FS ≥ 2W, and since the samples are com-
plex the total required bit rate is Rb = 2Fsk ≥ 2W · 2 · 5 = W · 20. In the next
table the resulting minimum bit rates for the LTE bands are shown. The calcu-
lations are based on uniformly distributed amplitude of the samples, which is
not the case in reality. So, the result is a bit optimistic and a real signal would
require some extra bits per real sample.

W [MHz] Rb,min [Mbps] CPRI [Mbps]
1.4 28 614.4/8
3 60 614.4/3
5 100 614.4
10 200 1228.8
15 300 1228.8
20 400 2457.6

As a comparison, for each bit rate, the rates used by the fronthaul protocol
CPRI is shown. This is a standard developed for transporting samples within
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the base-station, but also often considered for transporting LTE samples over
fibre connections further distances. The relatively high bit rates comes from
the requirement of 15 b/real sample. In CPRI the specified bit rates in Mbps are
614.4, 1228.8, 2457.6, 3072, 4915.2, 6144, 9830.4. Then for the 1.4 MHz band there
can be 8 signals in one 614.4 Mbps stream and for the 3 MHz band 3 signals in
a 614.4 Mbps stream. For the others it is one signal per stream.

In the case of uniform distribution it is natural to set the reconstructed value
to the centre in the quantisation interval. In the general case, for a given inter-
vall ∆m ≤ x < ∆m+1 and a reconstruction value xm in the interval m with the
distribution f (x|m), the average distortion is

dm = EX|m
[
(X− xm)

2] = EX|m
[
X2]− 2xmEX|m

[
X
]
+ x2

m (11.68)

Thus, to find the reconstruction value that minimises the distortion take the
derivative with respect to xm to get

∂dm

∂xm
= −2EX|m

[
X
]
+ 2xm = 0 (11.69)

and hence the optimal reconstruction value is xm = EX|m
[
X
]
. For the uni-

form distribution this is indeed the centre in the intervall as used above. For
other distributions the value can change. In the next example the reconstruc-
tion value for a Gaussian source when using a 1-bit quantiser is derived.

EXAMPLE 11.4 Assume a Gaussian source where X ∼ N(0, σ) and a 1 bit quan-
tiser. The natural intervalls are divided buy the value x = 0, i.e. for x < 0, y = 0
and for x ≥ 0, y = 1. Since the two sides are symmetric it is only needed to
derive the optimal reconstruction level for the positive side. There, the distri-
bution is given by

f (x|y = 1) =
2√

2πσ2
e−x2/2σ2

(11.70)

and the reconstruction value is

x1 =
∫ ∞

0
x

2√
2πσ2

e−x2/2σ2
dx =

√
2
π

σ (11.71)

Consequently, the reconstruction value for the negative side

x0 = −
√

2
π

σ (11.72)

With these levels the average quantisation distortion becomes E
[
d(X, XQ)

]
=

σ2

π (π − 2).


