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10 Discrete Input Gaussian Chan-
nel

In the previous chapter it was seen that to reach capacity for a Gaussian channel
the input variable should be Gaussian distributed. Normally, it is not possible
to use a continuous distribution for the transmitted signals and instead discrete
values are used. That is, the transmitted variable is discrete while the noise
on the channel is Gaussian. Furthermore, in most applications the transmitted
signal alternatives are considered to be equally likely. In this section a con-
straint capacity, in form of the mutual information, for an M-PAM modulated
signal will be derived in the case when the (finite number) signal alternatives
are equally likely. The loss made by using uniformly distributed inputs will
be derived and addressed as the shaping gain. Finally, a parameter called the
SNR gap is derived to show how far from the capacity an uncoded system is
working. This latter value is derived for a certain obtained bit error rate.

10.1 M-PAM signalling

When transmitting discrete data over a channel the bits must be represented by
signals such that it can be transmitted over a continuous media. It should also
be possible for the receiver to decode back to the discrete form even though the
signal was distorted by the channel. This process is called modulation and de-
modulation, and one of the basic modulation scheme is M-ary Pulse Amplitude
Modulation (M-PAM). The number M is the number of signal alternatives, i.e.
the number of different signals used in the scheme. Since the transmitted data
is often binary, this number will here be assumed to be a power of 2, M = 2k.
In an M-PAM scheme a signal is built from an amplitude and a pulse form,
where the amplitude is the information carrier and the pulse form common for
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236 10. Discrete Input Gaussian Channel

all signal alternatives. To minimise the average signal energy the amplitudes
are centered around zero, e.g. the binary case has the amplitudes −1 and 1. If
M = 4 the amplitudes −3, −1, 1 and 3 are used. In this way the minimum
difference between two amplitude values are always 2. For an arbitrary M the
amplitude values can be described by

Ai = M− 1− 2i, i = 0, 1, 2, . . . , M− 1 (10.1)

which holds for all positive integer M and not just powers of 2 [54]. Then, to
form the signal the amplitude is applied to a pulse form g(t), meaning that the
general form of a signal alternative in M-PAM can be written as

si(t) = Aig(t) (10.2)

In Figure 10.1 a graphical view of the 2-PAM and 4-PAM signal alternatives are
shown.

g(t)
−1 1

(a)

g(t)
−3 −1 1 3

(b)

Figure 10.1: Graphical representation of (a) 2-PAM and (b) 4-PAM.

Assuming an infinite binary information sequence to be transmitted, where tu-
ples of k = log M bits are mapped to an amplitude Ai, the transmitted signal
is

s(t) = ∑
`

Ai` g
(
t− `Ts

)
(10.3)

where Ts is the signalling interval.

The pulse form g(t) has the energy
∫

R
g2(t)dt = Eg. By letting A be a random

variable for the amplitude level, the symbol energy becomes,

Es = E
[∫

R
(Ag(t))2dt

]
= E[A2]

∫
R
(g(t))2dt = E[A2]Eg (10.4)

For equally likely signal alternatives and levels according to a PAM constella-
tions this yields

Es = E[A2]Eg =
M−1

∑
i=0

1
M

A2
i Eg =

M2 − 1
3

Eg (10.5)

EXAMPLE 10.1 [Origin of BSC] Considering a 2-PAM signal constellation used
to communicate over a channel with AWGN. The signals are chosen from the
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10.1. M-PAM signalling 237

two signal alternatives in Figure 10.1(a). To transmit a mapping between the
information bit a and the amplitude is used according to sa(t) = sa · g(t), where
sa = (−1)a and g(t) =

√
Egφ(t), i.e.

sa(t) =

{√
Egφ(t), a = 0
−
√

Egφ(t), a = 1
(10.6)

The basis function φ(t) is a scaled version of g(t) such that it has unit energy,∫
R

φ2(t)dt = 1. The energy per transmitted information bit for this constella-
tion is

Eb =
1

∑
a=0

1
2

∫
R

s2
a(t)dt =

1

∑
a=0

1
2

Eg

∫
R

φ2(t)dt = Eg (10.7)

On the channel white noise with density Rη( f ) = N0/2 is added to the signal.
In the receiver, after filtering and ML detection, this means the received signal
can be viewed as the point r = s + z in the signal space, where s = ±

√
Eb

is the transmitted signal amplitude and z ∼ N
(
0,
√

N0/2
)
. In Figure 10.2 the

probability distributions for the received value conditioned on the transmitted
s is shown.

φ(t)

f (r|s)

−
√

Eb
√

Eb

P
(
error|s = −

√
Eb
)

Figure 10.2: The conditional distributions at the receiver side in a 2-PAM trans-
mission over an AWGN channel.

If the two signal alternatives are equally likely, an ML receiver follows a simple
decoding rule. If the received value is positive the estimated transmitted am-
plitude

√
Eb, and if the value is negative the estimated transmitted amplitude

is −
√

Eb. Hence the probability of erroneous estimation, conditioned on the
transmitted amplitude −

√
Eb is

P
(
error|s = −

√
Eb
)
= P

(
r > 0|s = −

√
Eb
)

= P
(
z >

√
Eb
)

= P
(

znorm >
√

Eb
N0/2

)
= Q

(√
2 Eb

N0

)
(10.8)

where znorm ∼ N(0, 1) is a normalised Gaussian variable and

Q(x) =
∫ ∞

x
1√
2π

e−t2/2dt (10.9)
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238 10. Discrete Input Gaussian Channel

an error function. Similarly, the error probability conditioned on the transmit-
ted amplitude

√
Eg gets the same value. This error probability is the probability

that a 1 is transmitted and a zero is received, and vice versa. That is, the channel
can now be modelled as a binary symmetric channel, BSC, with the cross over
probability equal to

ε = Q
(√

2 Eb
N0

)
(10.10)

In Figure 10.3 the error probability ε is plotted as a function of the signal to
noise ratio Eb/N0. With this mapping the capacity for the BSC, CBSC = 1− h(ε)
is plotted in Figure 10.4.

Eb
N0

ε
1

10−3

10−6

100

Figure 10.3: The error probability of
a BSC as a function of Eb/N0 for an
AWGN channel.

Eb
N0

CBSC

1

0.5
100

Figure 10.4: The capacity of a
BSC as a function of Eb/N0 for an
AWGN channel.

In Chapter 8 it was seen that the interpretation of the mutual information is the
same in the discrete and the continuous case, i.e. the amount of information
achieved about one variable by observing another. The derivations to get there
was based on a Riemann sum limit value. Thus, the interpretation still holds
if one of the variables is discrete and the other continuous. This is an impor-
tant fact since the capacity for a channel is the mutual information maximised
over the input distribution. In this section the considered channel model has
discrete input signals, but white noise is added on the channel. To derive the
capacity for this model the mutual information should be maximised over all
distributions for the input signals. However, in many cases the the signals are
transmitted with equal probabilities, and the counterpart of the capacity, a con-
straint capacity, is the mutual information for the case with discrete, equally
likely inputs and white noise added in the transmission. The mutual infor-
mation between discrete and continuous variables can be derived in the same
manner as before by I(X; Y) = H(Y)− H(Y|X). Letting p(x) be the distribu-
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10.1. M-PAM signalling 239

tion for the input symbols X, the conditional entropy can be written as

H(Y|X) = −∑
x

∫
R

f (x, y) log f (y|x)dy

= −∑
x

∫
R

f (y|x)p(x) log f (y|x)dy

= ∑
x

p(x)
(
−
∫

R
f (y|x) log f (y|x)dy

)
= ∑

x
p(x)H(Y|X = x) (10.11)

Except for the probabilities of X also the density function of Y conditioned on
X is needed, which is the channel transition density function. Furthermore, by
expressing f (y) = ∑x f (y|x)p(x), the entropy of Y can be written as

H(Y) = −
∫

R
f (y) log f (y)dy

= −
∫

R

(
∑
x

f (y|x)p(x)
)

log
(
∑
x

f (y|x)p(x)
)

dy (10.12)

For an M-PAM signal constellation with equally likely signal alternatives the
density of Y becomes

f (y) =
1
M ∑

x
f (y|x) (10.13)

Assuming an additive Gaussian noise with zero mean and variance N0/2, the
conditional density function is

f (y|x) = 1√
πN0

e−(y−x)2/N0 (10.14)

In Figure 10.5 the resulting density function for an 8-PAM constellation is shown.
In the figure the contribution from the eight conditional density functions f (y|x)
are shown as dashed curves, while the density function for Y is shown as a solid
curve. In this example the noise variance is quite high to show the behaviour.
In the case of a more moderate noise the eight peaks corresponding to the signal
alternatives will be more separated by deeper valleys.

To get the entropy of Y the function − f (y) log f (y) is integrated by numerical
methods. The entropy conditional entropy H(Y|X) can be derived from

H(Y|X) =
1
2

log πeN0 (10.15)

since [Y|X = x] ∼ N(x,
√

N0/2).
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240 10. Discrete Input Gaussian Channel

g(t)

f (y)

−7 −5 −3 −1 1 3 5 7

Figure 10.5: The density functions f (y|x) for an 8-PAM signal transmitted over
a Gaussian channel, together with the resulting f (y).

In Figure 10.6 plots of the mutual information I(X; Y) = H(Y) − H(Y|X) for
M-PAM signalling is shown for the case of equiprobable signal alternatives and
additive Gaussian noise. Here, the mutual information I(X; Y) is a measure
of how much information can be transmitted over the channel for each chan-
nel use, i.e. for each signal alternative sent. The plots typically flattens at the
maximum transmitted bits for the number of signal alternatives as the chan-
nel becomes good. For example, six bits can be written as 64 different binary
vectors and 64-PAM therefore flattens at 6 bits/channel use.

Es/N0 [dB]

I(X; Y)

2-PAM

4-PAM

8-PAM

16-PAM

32-PAM

64-PAM

128-PAM

256-PAM

Es/N0
ln 2

1
2 log(1 + 2 Es

N0
)

1
2 log 2 Es

N0

γs = 1.53 dB

−10 10 20 30 40 50

1

2

3

4

5

6

7

8

Figure 10.6: Constraint capacity for discrete uniformly distributed signal con-
stellations, like M-PAM, transmitted over an AWGN channel. The grey shaded
line in the figure is the capacity C = 1

2 log(1 + 2 Es
N0

). The circles on the curves
mark the SNR where the uncoded M-PAM signalling gives an error probability
of 10−6.
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By assuming Nyquist sampling, W = 2Ts, the capacity becomes

C =
1
2

log
(

1 +
P

N0W

)
=

1
2

log
(

1 +
Es/Ts

N0/2Ts

)
=

1
2

log
(

1 + 2
Es

N0

)
[bit/channel use] (10.16)

where Es is the average signalling energy in one signal intervall. In the figure
the capacity is shown as the thick grey line.

For good channels, as Es
N0

becomes large, the one in the capacity formula can be

neglected. Furthermore, for bad channels, as Es
N0

becomes small, the following
series expansion can be used

1
2

log
(
1 + x

)
=

1
2 ln 2

(
x− x2

2
+

x3

3
− x4

4
+ · · ·

)
≈ x

2 ln 2
(10.17)

Hence, the asymptotic behaviour of the capacity function is given by

C ≈
{

1
2 log 2 Es

N0
, Es

N0
large

1
ln 2

Es
N0

, Es
N0

small
(10.18)

In Figure 10.6 these two functions are shown as a dashed line and a dotted line,
respectively. There is also one more dotted line, located 1.53 dB to the right
of the asymptotic capacity. This shows the asymptotic slope of the achievable
bit rate for equiprobable M-PAM signalling. The 1.53 dB gap shows the possi-
ble gain by not restricting to equiprobable signal alternatives. This quantity is
called the shaping gain and will be further elaborated in Section 10.3.

Assuming the Nyquist sampling rate Fs = 2W, the signal period is 1/2W. With
P as the average power the energy per signal becomes Es = P/2W. Hence, the
signal to noise ratio in the capacity formula can be derived asindexSNR

SNR =
P

WN0
= 2

Es

N0
(10.19)

which explains the capacity formula in (10.16).

10.2 A note on the dimensionality

Figure 10.6 contains a lot of information about how a real system can be ex-
pected to behave compared to what the capacity limit promise. The mutual
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242 10. Discrete Input Gaussian Channel

information plotted for different M-PAM constellations in the figure shows
how practical systems behave at the best, using equally likely signal alterna-
tives. It also shows the asymptotic loss made by using uniform distribution
instead of Gaussian. In the plot the the unit of the x-axis is often expressed
as bits/transmission per dimension, where transmission means the transmission of
a signal alternative. The extra added term per dimension can be interpreted in
a variety of ways, and it is worth to give a special note on this. In an infor-
mation theoretical view the per dimension can be any dimension and it is not
strictly coupled to the time series of signal alternatives or the dimensionally of
the signal constellation.

To get a better understanding of how the capacity relates to the dimensionality
of the signal consider an N-dimensional signal and introduce N orthonormal
basis function, φi(t), i = 1, 2, . . . , N. The orthonormality requirement means

∫
R

φi(t)φj(t)dt = δi−j =

{
1, i = j,
0, i 6= j

(10.20)

The basis functions used represent the span of the signal in different dimen-
sions. However, it does not say how they are differentiated. A PAM signal can
be seen as N consecutive signal alternatives separated in time, and then the
base pulses g(t − nTs) and g(t − kTs) are orthogonal if n 6= k and the pulse
duration is T. In a QAM constellation it is often used that the basis functions
φ1(t) =

√
2cos(2π fct) and φ2(t) =

√
2sin(2π fct) have an orthogonal behaviour

for fc � 1/Ts. So, the dimensions here can be seen as the dimensionality of the
signal constellation, but it has also a more general interpretation and can e.g.
be seen as separation in time. The signal is constructed from N (real) signal
amplitudes, si, i = 1, 2, . . . , N, as

s(t) =
N

∑
i=1

siφi(t) (10.21)

After transmission over an AWGN channel the received signal is

r(t) = s(t) + η(t) (10.22)

where η(t) is white noise with power density Rη( f ) = N0/2. The signal can
then be represented in dimension i as

ri =
∫

R
r(t)φi(t)dt =

∫
R

(
s(t) + η(t)

)
φi(t)dt = si + ηi (10.23)
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where ηi =
∫

R
η(t)φi(t)dt, and it has been used that∫

R
s(t)φi(t)dt =

∫
R

∑
j

sjφj(t)φi(t)dt

= ∑
j

sj

∫
R

φj(t)φi(t)dt

= ∑
j

sjδi−j = si (10.24)

The noise parameter in the received dimension has the following mean and
auto correlation

E
[
ηi
]
= E

[∫
R

η(t)φi(t)dt
]
=
∫

R
E
[
η(t)

]
φi(t)dt = 0

rη(i, j) = E
[
ηiηj

]
= E

[∫
R

η(t)φi(t)dt
∫

R
η(s)φj(s)ds

]
=
∫

R

∫
R

E
[
η(t)η(s)

]
φi(t)φj(s)dtds

=
∫

R

N0

2
φi(t)

∫
R

δ(t− s)φj(s)dsdt

=
N0

2

∫
R

φi(t)φj(t)dt =
N0

2
δi−j =

{
N0
2 , i = j

0, i 6= j
(10.25)

where it is used that E
[
η(t)

]
= 0 and E

[
η(t)η(s)

]
= N0

2 δ(t − s). This shows
the noise component in each dimension is Gaussian with zero mean and vari-
ance N0

2 , i.e. ηi ∼ N(0,
√

N0/2). Hence, the N dimensions are equivalent to N
transmissions over a Gaussian channel.

Denoting the total energy in an N-dimensional signal by Es, the energy per
dimension is E(dim)

s = Es/N and the signal to noise ratio

SNR(dim)
N = 2

Es/N
N0

=
2
N

Es

N0
(10.26)

Signalling at the Nyquist sampling rate for a band limited signal with band-
width W, the sampling rate is Fs = 2W. Thus, a vector with N samples will
take the transmission time T = N

2W , i.e. N = 2WT. Hence, the SNR can be
written as

SNR(dim)
N =

Es

WTN0
=

P
WN0

(10.27)

where in the second equality it is used that Es = TP. Thus, the capacity per
dimension is

C(dim) =
1
2

log
(

1 +
P

WN0

) [ b
tr./dim

]
(10.28)
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and the capacity for the N dimensional signal construction

C(N) =
N
2

log
(

1 +
P

WN0

)
= WT log

(
1 +

P
WN0

) [
b/N dim tr.

]
(10.29)

Division by T gives the capacity in b/s as

C(N) = W log
(

1 +
P

WN0

)
[b/s] (10.30)

This means the capacity in bits per second for a band limited signal is indepen-
dent of the dimensionality of the signal construction. Especially it is indepen-
dent of the dimensionality of the signal constellation.

In the derivations it was seen that each amplitude in a signal constellation is
equivalent to a sample in terms of the sampling theorem. In essence, N ampli-
tudes gives N degrees of freedom, which can be translated to N samples. Each
sample, or dimension, can transmit 1

2 log(1+ P
WN0

) bits per channel use. In this
aspect one real amplitude in one dimension in the signal space is regarded as
one sample. Hence, from an information theoretic view point there is no dif-
ference in transmitting N signals from a one-dimensional constellation during
time T, or one signal from an N-dimensional constellation in the same time.
They both represent an N dimensional signal space.

Even though the above derivations states that the dimensionality of the signal
does not matter, one has to be a bit careful. The requirements in the derivations
are that the basis functions are orthonormal and that the utilised bandwidth is
unchanged. In the above description M-PAM signals are considered. An M-
QAM constellation is essentially formed by using two orthogonal

√
M-PAM

constellations, see Figure 10.7 which describes how two 4-PAM constellations
are used to form a 16-QAM constellation. In general, such construction can be
done using two real signals modulated in terms of a complex signal.

φ1(t)

φ2(t)

⇒
φ1(t)

φ2(t)

Figure 10.7: Two orthogonal 4-PAM considered as a 16-QAM constellation.

Consider a real base-band signal sb(t) with the positive bandwidth W, see Fig-
ure 10.8a. Since sb(t) is real its spectra is Hermitian symmetric. Denoting the
positive frequency side of Sb( f ) by S+( f ), the negative side is the complex
conjugate mirror image S∗+(− f ). A frequency shifted signal centered at carrier
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frequency fc is created from

s(t) = sb(t)cos2π fct (10.31)

Its Fourier transform is

S( f ) = 1
2 Sb( f + fc) +

1
2 Sb( f − fc) (10.32)

which is shown in Figure 10.8b. Since the inner half of the signal, i.e. for
fc −W ≤ | f | < fc is a mirror image of the outer half, this can be filtered away
without loosing any information. The procedure is called single sideband mod-
ulation and is shown as the function SSSB( f ) in Figure 10.8c. This means the
effective bandwidth of both the baseband signal sb(t) and the frequency shifted
version sSSB(t) is W. Hence, the capacity for the system is

C =
1
2

log
(

1 +
P

N0W

)
=

1
2

log
(

1 + 2
Es

N0

)
[b/transmission] (10.33)

or, by using the Nyquist sampling rate Fs = 2W,

C = W log
(

1 + 2
Es

N0

)
[b/s] (10.34)

(a)
f

Sb( f )

W−W

S+( f )S∗+(− f )

(b)
f

S( f )
1
2 Sb( f + fc)

1
2 Sb( f − fc)

fcfc −W fc + W− fc− fc −W − fc + W

(c)
f

SSSB( f )
1
2 S∗+(−( f + fc))

1
2 S+( f − fc)

fc fc + W− fc− fc −W

Figure 10.8: modulation of the signal sb(t) to a higher carrier frequency fc using
single sideband modulation.

Now, like in the QAM construction, consider two real signals in two dimen-
sions. A natural way is to consider a complex signal with the two real baseband
signals sR(t) and sI (t) with positive bandwidth W, written as

sb(t) = sR(t) + jsI (t) (10.35)
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Since the signal is complex there are no longer any symmetries in the frequency
domain, and the complete bandwidth −W ≤ f ≤ W is used for information.
However, there is no way to transmit a complex signal directly since the signals
are transmitted in a real world. Therefore the signal is shifted up in frequency
using cosine for the real part and sine for the imaginary part as

s(t) = Re
{

sb(t)ej2π fct} = 1
2 sR(t) cos 2π fct− 1

2 sI (t) sin 2π fct (10.36)

To view the signal in the frequency domain, use Re{x(t)} = 1
2 (x(t) + x∗(t)),

S( f ) = F{s(t)} = 1
2
F
{

sb(t)ej2π fct
}
+

1
2
F
{

s∗b(t)e
−j2π fct

}
=

1
2

Sb( f − fc) +
1
2

S∗b (−( f + fc)) (10.37)

where the second equality follows from F (x∗(t)) = X∗(− f ). The second term
in (10.37), 1

2 S∗b (−( f + fc)) is a complex conjugated and mirrored version of
1
2 Sb( f − fc) centered around − fc, meaning the negative frequency side of S( f )
is a Hermitian reflection of the positive frequency side, as it should for a real
sequence. In this case the whole bandwidth fc −W ≤ f ≤ fc + W contains in-
formation and the resulting bandwidth for the modulated signal is W(2) = 2W.
By assuming the power P(2) used over the signal, the resulting capacity is

C(2) =
1
2

log
(

1 +
P(2)

N0W(2)

)
[b/tr] (10.38)

and, equivalently by using F(2)
s = 2W(2)

C(2) = W(2) log
(

1 +
P(2)

N0W(2)

)
[b/s] (10.39)

To compare the two signalling schemes, where one-dimensional or two-dimensional
real signals are used, the constants in (10.39) need to be interpreted. Since the
bandwidth is doubled in the second scheme, the power consumption will also
double, P(2) = 2P. Similarly, the energy used in the signalling will be di-
vided over the two dimensions, and the energy in the second signal becomes
E(2)

s = 2Es. Hence, the SNR for the second signalling can be expressed as

SNR(2) =
P(2)

N0W(2)
=

2P
N02W

=
E(2)

s
N0

(10.40)

and,

C(2) = 2W log
(

1 +
E(2)

s
N0

)
b/s (10.41)

This relation also reflect the relation between PAM and QAM signalling.
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10.3 Shaping gain

The channel capacity in terms of bit rate in Figure 10.6, the gray line, is the
maximum achievable bit rate on a Gaussian channel with the SNR measured
in Es/N0. To reach this limit the communication system must be optimised in
all possible ways. One of many requirements is that the input signal must be
chosen as a according to a continuous Gaussian distribution. In most commu-
nication systems the choice of signal is done according to uniform distribution
over a discrete set of signals. In the figure this asymptotic loss is shown as the
gap between the channel capacity and the dotted line. Since this reflects the
gain that is possible to achieve by shaping the input distribution from uniform
to Gaussian, it is called the shaping gain and often denoted γs. By viewing the
total gain that is possible, viewed from the uncoded case, it can be split in two
parts, the shaping gain γs and coding gain γc. Quite often it is easy to achieve
a coding gain of a couple of dB by using some standard channel coding. But to
achieve higher gains an alternative is to consider shaping of the constellation.

The ultimate shaping gain of 1.53 dB denoted in Figure 10.6 denotes the max-
imum shaping gain. To show this value consider the case when the signal to
noise ration, Es/N0, becomes large. The interesting part of the plot is then the
growth of the mutual information for M-PAM signalling before it flattens due
to a finite number of signals. By letting the number of signal alternatives ap-
proaching infinity the distribution of X becomes the continuous rectangular
distribution

fu(x) =
1
2a

, where − 1
a
≤ x ≤ 1

a
(10.42)

This should be compared to the case of a Gaussian distribution, fg(x). In this
region of the plot, for high SNR the mutual information is dominated by the
entropy of the input distribution. For the Gaussian case the average signal
energy and the entropy is, see Appendix A,

Pg = E
[

X2
g

]
= σ2 (10.43)

H(Xg) =
1
2

log 2πeσ2 =
1
2

log 2πePg (10.44)

For the uniform case the corresponding derivation gives

Pu = E
[

X2
u

]
=

a2

3
(10.45)

H(Xu) = log 2a =
1
2

log 12Pu (10.46)

For these two distributions to give the same entropy, the relation on input
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power is

γs =
Pu

Pg
=

πe
6
≈ 1.62 = 1.53 dB (10.47)

The shaping from a uniform distribution of the signal alternative to a Gaus-
sian gives the ultimately possible gain. In the next example it is shown that a
fair amount of the gain can be reached just by considering a distribution that
favours the low energy signals before the high energy. The mapping from a
uniform to non-uniform distribution indicates that the shaping process can be
seen as the dual of source coding, in the sense that perfect source coding gives
a uniform distribution of the code symbols. One easy way to get unequal vec-
tors from equally distributed bits, is to consider unequal lengths of the input
vectors, and this mapping can be performed in a binary tree.

EXAMPLE 10.2 First, the unshaped system is defined as an 8-PAM system. Then
the signal alternatives can be viewed as in Figure 10.9. If the signal alternatives
are equally likely the energy derived as the second moment of the signal am-
plitudes is E[X2] = 21 and for each signal three bits are transmitted.

g(t)
−7 −5 −3 −1 1 3 5 7

Figure 10.9: Signal alternatives in an 8-PAM constellation.

To find a constellation where the signals have lower average energy, the num-
ber of transmitted bits and the inter signal spacing should be unchanged. This
corresponds to the obtained bit rate and the symbol error probability in the
transmission, respectively. Instead the distribution of the signal alternatives
should be chosen non-uniform. If the input sequence is considered as i.i.d.
equiprobable bits, one way to alter the distribution is to have unequal length
of the vectors mapping to the signal alternative. Here, these vectors are deter-
mined from the paths in a binary tree where there are no unused leaves. By
choosing some vectors shorter than 3 and others longer, and by mapping high
probable vectors to low energy signals, the total energy can be lowered. The
tree in Figure 10.10 shows the mapping between signal alternatives si and the
input vectors decided by the tree paths. Since the binary information is as-
sumed to be equiprobable the probabilities for the nodes at each level is shown
under the tree. The average length of the information vectors can then be de-
termined by the path length lemma as

E[L] = 1 + 2 1
2 + 2 1

4 + 2 1
8 + 4 1

18 = 3 (10.48)

In the tree there are 12 leaves corresponding to signal alternatives. Hence, the
price paid is an expansion of the signal constellation, but the idea is to use the
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added high energy alternative with a low probability so in average there is a
gain. The amplitudes and the corresponding probabilities of the signal alterna-
tives are shown in Figure 10.11. The energy derived as the second moment is
then

E[X2
s ] = 2 1

4 + 2 1
8 32 + 2 1

32 (5
2 + 72 + 92 + 112) = 20 (10.49)

and the shaping gain is

γs = 10 log10
21
20 = 0.21dB (10.50)

In Problem?? it is shown that the same construction when letting the tree grow
even further can give an asymptotic shaping gain of γ

(∞)
s = 0.9177dB.

s0 00000
s11 00001
s1 00010
s10 00011
s2 00100
s9 00101
s3 00110
s8 00111

s4 010
s7 011

s5 10
s6 11

p : 1 1
2

1
4

1
8

1
16

1
32

Figure 10.10: A binary tree for determining a shaping constellation.

g(t)
−11

s0

1/32
−9

s1

1/32
−7

s2

1/32
−5

s3

1/32
−3

s4

1/8
−1

s5

1/4
1

s6

1/4
3

s7

1/8
5

s8

1/32
7

s9

1/32
9

s10

1/32
11

s11

1/32

Figure 10.11: Signal alternatives and the probabilities in the shaped constella-
tion.

In the example it was seen that the average energy can be decreased by shaping
the probability distribution over the signal constellation. The shaping proce-
dure can also be seen in another way. A vector of two symbols, each modu-
lated by a 16-PAM signal constellation, result in a 256-QAM signal constella-
tion, see upper left constellation of Figure 10.12. Since the QAM signal space
has a square form the energy in the corner signal alternatives are rather high.
If instead the 256 signal alternatives is chosen within a circle, the upper right
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constellation in the figure, the total energy can be decreased. Assuming the dis-
tance between two signal points in the figure is 2 and that they are used with
equal probability, the average energy derived as the second moment for the
squared constellation is

EQAM = 170 (10.51)

Similarly, when the signal alternatives in the squared constellation are equally
probable, the energy is

ESphere = 162.75 (10.52)

The resulting shaping gain is

γs = 10 log10
EQAM

ESphere
= 0.189dB (10.53)

Figure 10.12: The signal alternatives in the two dimensional constellations 256-
QAM and a spherical shaped version. Below are the distributions projected
to one dimension. The dashed distribution is the projection of the continuous
spherical constellation.

In Figure 10.12 it is assumed that the signal alternatives are equally likely in
both the squared and the spherical case. The distributions below the signal
constellations are the probability functions projected in one dimension. Clearly
for the square case there are 16 equally likely alternatives. In the spherical case
there are 18 alternatives where the low energy alternatives has highest proba-
bility. Hence, by choosing a spherical constellation in two dimensions the dis-
tribution is shaped when projected into one dimension.
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To find the maximum shaping, a cubic constellation in N dimensions is com-
pared with a spherical constellation in N dimensions. When the number of
signal alternatives grows the discrete constellations can be replaced with con-
tinuous distributions without any essential loss of accuracy. Then the second
moment of a uniform distribution over an N dimensional cube should be com-
pared with the second moment of a uniform distribution over an N dimen-
sional sphere. To compare the two distributions they should have the same
volume, and therefore they are normalised to unit volume.

Starting with the cubic constellation, the volume of an N dimensional cube with
side A is

V� =
∫
�

dx =

A/2∫
· · ·

∫
−A/2

dx1 . . . dxN = AN (10.54)

where x = (x1, . . . , xN) is an N dimensional vector. Normalising to a unit vol-
ume cube gives that A = 1. Since the N-cube is the boundary for a uniform
distribution, the probability function is f�(x) = 1/V� = 1. Hence, the sec-
ond moment, or the energy, for the cubic constellation in N dimensions can be
derived as

E(N)
� =

∫
�
|x|2dx =

1/2∫
· · ·

∫
−1/2

(x2
1 + · · ·+ x2

N)dx1 . . . dxN

= N
∫ 1/2

−1/2
x2dx = N

[ x3

3

]1/2

−1/2
= N

1
12

(10.55)

To do similar derivations for the spheric constellation in N dimensions a useful
integral relation from [24], formula 4.642, is noted∫

|x|2≤R2
f (|x|)dx =

2πN/2

Γ
(N

2
) ∫ R

0
xN−1 f (x)dx (10.56)

where Γ(n) is the Gamma function, see Section A.2. By letting f (x) = 1, the
volume of an N-dimensional sphere is

V© =
∫
©

dx =
∫
|x|2≤R2

dx =
2πN/2

Γ
(N

2
) ∫ R

0
xN−1dx

=
2πN/2

Γ
(N

2
) [ xN

N

]R

0
=

2πN/2

Γ
(N

2
) RN

N
(10.57)

Setting V© = 1 yields the radius

R =
1√
π

(
N
2 Γ
(N

2
))1/N

=
1√
π

(
Γ
(N

2 + 1
))1/N

(10.58)



i
i

“InfoTheory” — 2015/3/3 — 10:55 — page 252 — #260 i
i

i
i

i
i

252 10. Discrete Input Gaussian Channel

and then the normalised energy can be derived as

E(N)
© =

∫
©
|x|2dx =

2πN/2

Γ
(N

2
) ∫ R

0
xN−1x2dx

=
2πN/2

Γ
(N

2
) RN+2

N + 2
=

2πN/2RN

Γ
(N

2
)

N︸ ︷︷ ︸
V©=1

N
N + 2

R2

=
N

(N + 2)π

(
Γ
(N

2 + 1
))2/N

(10.59)

The shaping gain for the N-dimensional case when comparing the cubic and
the spherical constellations is

γ
(N)
s =

E(N)
�

E(N)
©

=
π(N + 2)

12Γ
(N

2 + 1
)2/N (10.60)

The Gamma-function generalises the factorial function to positive real values
with a smooth curve where n! = Γ(n + 1), for integer n. Therefore it is reason-
able to use Stirling’s approximation to get

Γ(n + 1) = n! ≈
√

2πn
( n

e
)n (10.61)

Hence, for large N,

γs ≈
π(N + 2)

12
((

2π N
2
)1/2( N

2e
)N/2

)2/N

=
πe
6

N + 2
N

( 1
πN
)1/N → πe

6
, N → ∞ (10.62)

which is the same ultimate shaping gain as when comparing uniform and Gaus-
sian distributions for the input symbols. Actually, as will be seen in Problem ??,
the projection from a uniform distribution over a multi-dimensional sphere to
one dimension will be a Gaussian distribution when the dimensionality grows
to infinity. Therefore comparing the shaping gain between multidimensional
cubic and spherical uniform distributions is the same as comparing the one-
dimensional uniform and Gaussian distributions.

10.4 SNR gap

When describing the capacity formula for discrete input constellations like M-
PAM, it is also natural to consider the SNR gap. This is a measure of how far
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from the capacity limit a system is working for a specific achieved probability
of error. Here PAM signalling is considered to derive the achieved bit error
rate. Then the SNR gap describes the possible gain in SNR by approaching the
capacity.

Previously, the signal constellation for 2, 4 and 8-PAM has been considered,
see Figure 10.1 and 10.9. In general, for an M-PAM constellation the signal
amplitudes are determined by

Ai = M− 1− 2i, i = 0, 1, . . . M− 1 (10.63)

Then the valid amplitudes will be as described in Figure 10.13. The pulse shape
is determined by the function g(t) =

√
Egφ(t) where φ(t) has unit energy.

· · · · · ·
√

Egφ(t)
Ai : −(M− 1)−(M− 3)

−1 1 M− 3 M− 1

i : M− 1 M− 2 M
2 − 1 M

2 + 1 1 0

Figure 10.13: Signal alternatives in an M-PAM constellation.

The received signal, distorted by AWGN, is given as y = Ai + η, where η ∼
N(0,

√
N0/2). An ML decoding rule chooses the signal amplitude closest to

the received signal in terms of Euclidian distance in Figure 10.13. There will
be a decoding error in the case when the received signal is not closest to the
transmitted signal alternative. For the M − 2 inner signal alternatives, i ∈
{1, . . . , M − 2}, this will happen when the noise component η is either larger
than

√
Eg or smaller than −

√
Eg. In both cases the probability is P

(
η >

√
Eg
)
.

For the outer signal alternatives, i ∈ {0, M− 1}, it will only be error in one of
the cases. That means the error probability conditioned on the signal alternative
is

Pe|i =

{
2P
(
η >

√
Eg
)
, i = 1, . . . , M− 2

P
(
η >

√
Eg
)
, i = 0, M− 1

(10.64)

With equally likely signal alternatives the error probability is

Pe = ∑
i

1
M

Pe|i =
1
M

(
(M− 2)2P

(
η >

√
Eg
)
+ 2P

(
η >

√
Eg
))

= 2
M− 1

M
P
(
η >

√
Eg
)
= 2

(
1− 1

M

)
P
(
η >

√
Eg
)

(10.65)

The above probability is given in terms of the energy in the pulse shape Eg. the
energy in signal alternative i is A2

i Eg, and hence, the average signal energy is
given by

Es =
1
M

M−1

∑
i=0

A2
i Eg =

Eg

M

M−1

∑
i=0

(M− 1− 2i)2 =
Eg

3
(M2 − 1) (10.66)
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or, equivalently,

Eg =
3Es

M2 − 1
(10.67)

Then, together with the noise variance of N0/2, the signal error probability can
be expressed as

Pe = 2
(

1− 1
M

)
P
(

η >
√

3Es
M2−1

)
= 2

(
1− 1

M

)
Q
(√

3Es
(M2−1)N0/2

)
= 2

(
1− 1

M

)
Q
(√

3
M2−1 2 Es

N0

)
= 2

(
1− 1

M

)
Q
(√

3
M2−1

P
WN0

)
(10.68)

When transmitting binary vectors the number of signal alternatives should be
a power of two, M = 2k, where k is the number of transmitted bits per chan-
nel use. To have reliable communication this number should be less than the
capacity, in bits per transmission,

k ≤ C =
1
2

log(1 + SNR) (10.69)

By rearranging the relation between the capacity and the transmitted bits above,
it is seen that

SNR
22k − 1

≥ 1 (10.70)

Therefore, it is reasonable to define a normalised SNR as

SNRnorm =
SNR

22k − 1
(10.71)

where the signal to noise ratio is

SNR =
P

WN0
= 2

Es

N0
= 2k

Eb
N0

(10.72)

As k = C the normalised SNR is one since C = 1
2 log(1+ SNR) gives SNR

22C−1 = 1.
Thus,

SNRnorm

{
= 0dB, k = C
> 0dB, k < C

(10.73)

which means the normalised SNR can be seen as a measure of how far from the
capacity a system works.
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Since M = 2k the normalised SNR can be written as SNRnorm = SNR
M2−1 , and the

error probability for the M-PAM constellation becomes

Pe = 2
(

1− 1
M

)
Q
(√

3 · SNRnorm
)

(10.74)

For large M it is simplified to

Pe = 2Q
(√

3 · SNRnorm
)

(10.75)

In Figure 10.14 the error probability is plotted as a function of the normalised
SNR for 2-PAM, 4-PAM, 8-PAM and M-PAM, where M is large. At an error
probability of 10−6 the normalised SNR is close to 9 dB for large M. For a 2-
PAM system it is for the same error probability 8.8 dB. The conclusion from this
is that a PAM system working at an error probability of 10−6 has a gap to the
capacity limit of 9 dB.

SNRnorm [dB]

Pe 2-PAM
4-PAM

8-PAM
M-PAM

1 2 3 4 5 6 7 8 9 10

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Figure 10.14: Symbol error probability for M-PAM signals as a function of the
normalised SNR.

Quite often the SNR gap is used when estimating the bit rate achieved by a
PAM (or QAM) system. Then it is viewed from another angle. Starting with
(10.75) the symbol error probability for large M, the normalised SNR can be
written as

SNRnorm =
1
3

(
Q−1(Pe/2

))2
(10.76)

Since the normalised SNR is SNRnorm = SNR
22k−1

, this gives

22k = 1 +
SNR

1
3
(
Q−1(Pe/2)

)2 (10.77)
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or, equivalently, the number of bits per transmission

k =
1
2

log

(
1 +

SNR
1
3
(
Q−1(Pe/2)

)2

)
=

1
2

log
(

1 +
SNR

Γ

)
(10.78)

where Γ = 1
3
(
Q−1(Pe/2)

)2 is the same SNR gap for PAM (or QAM) constella-
tions as derived earlier from Figure 10.14, in terms of normalised SNR. Going
back to Figure 10.6, the circles on the curves for the mutual information for the
M-PAM systems correspond to the SNR where Pe = 10−6. For high SNR the
horisontal difference in SNR between the capacity and the circular mark is the
SNR gap Γ. If the required error probability is decreased, the uncoded M-PAM
system can tolerate a lower SNR and the gap is decreased. Similarly, if the re-
quired error probability is increased the SNR for the M-PAM system is moved
to the right and the gap is increased. It is here worth noticing that the capacity,
as well as the mutual information plots in the figure, are bounds for when it
is possible to achieve arbitrarily low error probability, while the circular point
denote the uncoded system when the error is 10−6. To maintain the same error
probability for a lower SNR some coding and/or shaping is required. The ca-
pacity limit is in this aspect the limit of the lowest possible SNR for which it is
possible to transmit this number of bits.

In Figure 10.15 the SNR gap Γ is plotted as a function of the symbol error rate
Pe. For Pe = 10−6 the it becomes Γ ≈ 9 dB, which is often assumed in bit rate
estimations. For the bit rate in bits per seconds, the Nyquist sampling rate of
2W can be assumed to get

Rb = W log
(

1 +
SNR

Γ

)
= W log

(
1 +

P
ΓWN0

)
(10.79)

EXAMPLE 10.3 Consider an LTE like communication system using the band-
width 20 MHz. Assume that the received signal level is −70 dBm over the
complete band. That gives the signal power P = 10−70/10 mW. While this level
can be regarded as pessimistic, it can be compensated by an optimistic view of
the noise. As soon as an electrical current flows through a conductor the ther-
mal noise is added. So just by receiving the signal in the antenna a noise level of
−174 dBm/Hz is added to the signal. This means that N0 = 10−174/10 mW/Hz.
The signal to noise ratio over the bandwidth is then

SNR =
P

N0W
=

10−7

10−17.4 · 20 · 106 = 1.26 · 103 = 31 dB (10.80)

The capacity for this system is then

C = W log
(
1 + SNR

)
= 206 Mb/s (10.81)
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log10Pe

Γ [dB]

−1 −2 −3 −4 −5 −6 −7 −8

2

4

6

8
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Figure 10.15: SNR gap Γ as a function of the symbol error Pe.

To estimate the achieved bit rate a closer look on the system is required. First
there is an error correcting code. In the LTE system there are different strengths
of the coding that can be chosen. Here it is assumed a coding gain of γc = 4 dB,
which is relatively high. Further, assume the system is working at an error
probability of Pe = 10−6, which gives an SNR gap of Γ = 9 dB. Even though
it is not included in the LTE system as standardised today a shaping gain is
assumed of γs = 0.5 dB. This means the effective SNR of the transmission is

SNReff = SNR− Γ + γc + γs = 31− 9 + 4 + 0.5 = 26.5 dB = 447 (10.82)

That means an estimation of the bit rate in the system can be obtained as

Rb = W log
(
1 + SNReff

)
= 122 Mb/s (10.83)

In reality there are some more things to consider in the LTE system and the true
bit rate for the 20 MHz band is about 100 Mb/s.


