8. Information measures for continuous variables

8.2.1 Multi-dimensional Gaussian distribution

In the previous of this section the Gaussian distribution has been treated with extra care. Here the theory is expanded to the *n*-dimensional case. As a first step the Gaussian distribution will be defined for an *n*-dimensional random vector. In this the density function is defined and the differntial entropy derived.

A random *n*-dimensional column vector $\mathbf{X} = (X_1, ..., X_n)^T$, where ^{*T*} denotes the matrix transpose, is said to be Gaussian distributed if every linear combination of its entries forms a scalar Gaussian variable, i.e. if $\mathbf{a}^T \mathbf{X} = \sum_i a_i X_i \sim$ $N(\mu, \sigma)$ for every real-valued vector $\mathbf{a} = (a_1, ..., a_N)^T$. Since any linear combination of Gaussian variables is again Gaussian, the way to achieve this is to consider the case where each entrence in \mathbf{X} is Gaussian with mean μ_i and variance σ_i^2 , i.e. $X_i \in N(\mu_i, \sigma_i)$. The mean of the vector \mathbf{X} is

$$\boldsymbol{\mu} = E[\boldsymbol{X}] = (\mu_1, \dots, \mu_n)^T \tag{8.62}$$

and the covariance matrix

$$\Lambda_X = E[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T] = \left(E[(X_i - \mu_i)(X_j - \mu_j)]\right)_{i,j=1,\dots,n}$$
(8.63)

Clearly the diagonal elements of Λ_X contains the variances of X. The Gaussian distribution is denoted $X \sim N(\mu, \Lambda_X)$.²

To find the density function of the distribution consider a general scaling and translation of a random variable *X*. Let *X* be an *n*-dimensional random variable according to an *n*-dimensional distribution with mean μ and covariance Λ_X . If *A* is a square matrix of full rank and *a* an *n*-dimensional column vector, a new random vector Y = AX + a is formed. The mean and covariance of *Y* is

$$E[\mathbf{Y}] = E[A\mathbf{X} + \mathbf{a}] = AE[\mathbf{X}] + \mathbf{a} = A\mathbf{\mu} + \mathbf{a}$$

$$\Lambda_{\mathbf{Y}} = E[(\mathbf{Y} - E[\mathbf{Y}])(\mathbf{Y} - E[\mathbf{Y}])^{T}]$$

$$= E[A\mathbf{X} + \mathbf{a} - A\mathbf{\mu} - \mathbf{a})(A\mathbf{X} + \mathbf{a} - A\mathbf{\mu} - \mathbf{a})^{T}]$$

$$= E[(A(\mathbf{X} - \mathbf{\mu}))(A(\mathbf{X} - \mathbf{\mu}))^{T}]$$

$$= E[A(\mathbf{X} - \mathbf{\mu})(\mathbf{X} - \mathbf{\mu})^{T}A^{T}]$$

$$= AE[(\mathbf{X} - \mathbf{\mu})(\mathbf{X} - \mathbf{\mu})^{T}]A^{T} = A\Lambda_{\mathbf{X}}A^{T}$$
(8.64)
(8.64)
(8.64)

The idea is to transform the Gaussian vector X into a normalised Gaussian vector instead. In the case when X is a one dimensional random variable, this is done with $Y = \frac{X-\mu}{\sigma}$. To see how the corresponding equation looks for the

²In this text it is assumed that Λ_X has full rank. In the case it lower rank the dimensionality of the vector can be decreased.

8.2. Gaussian distribution

n dimensional case, some definitions and results from matrix theory is needed. For a more thorough treatment of this topic refere to e.g. [37]. Most of the results here will be given without any proofs.

Firstly, the covariance matrix is characterised to see how the square root of its inverse can be derived.

DEFINITION 8.6 A real matrix *A* is *symmetric*³ if it is symmetric along the diagonal, $A^T = A$.

If the matrix *A* is symmetric and has an inverse, the unity matrix can be used to get $I = AA^{-1} = A^{T}A^{-1} = (A^{-T}A)^{T} = A^{-T}A$, where $^{-T}$ denotes the transpose of the inverse. Then, $A^{-1} = IA^{-1} = A^{-T}AA^{-1} = A^{-T}$. Hence, the inverse of a symmetric matrix is again symmetric. From its definition it is directly seen that the covariance matrix is symmetric, since $E[(X_i - \mu_i)(X_j - \mu_j)] = E[(X_j - \mu_j)(X_i - \mu_j)]$.

In the one-dimensional case the variance is non-negative. In matrix theory this corresponds to that the covariance matrix is positive semi-definite.

DEFINITION 8.7 A real matrix *A* is *positive definite* if $a^T A a > 0$, for all vectors $a \neq 0$.

DEFINITION 8.8 A real matrix *A* is *positive semi-definite*, or non-zero definite, if $a^T A a \ge 0$, for all vectors $a \ne 0$.

Consider the covariance matrix Λ_X and a real valued column vector $a \neq 0$. Then

$$a^{T}\Lambda_{X}a = a^{T}E[(X-\mu)(X-\mu)^{T}]a$$

= $E[a^{T}(X-\mu)(X-\mu)^{T}a]$
= $E[(a^{T}X-a^{T}\mu)(a^{T}X-a^{T}\mu)^{T})] = V[a^{T}X] \ge 0$ (8.66)

since the variance of a one-dimensional random variable is non-negative. To conclude, the following theorem is obtained.

THEOREM 8.6 Given an *n*-dimensional random vector $\mathbf{X} = (X_1, ..., X_n)^T$ with mean $E[\mathbf{X}] = (\mu_1, ..., \mu_n)^T$, the covariance matrix $\Lambda_X = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T]$ is symmetric and positive semi-definite.

³A complex matrix *A* is *Hermitian* if $A^* = A$, where * denote complex conjugate and transpose. For a real matrix it is equivalent to being symmetric, i.e. $A^T = A$. In MATLAB the notation A' means Hermitian transpose, A^*

8. Information measures for continuous variables

In e.g. [37] it can be found that for every symmetric positive semi-definite matrix A, there exists a unique symmetric positive semi-definite matrix $A^{1/2}$ such that

$$(A^{1/2})^2 = A \tag{8.67}$$

This matrix $A^{1/2}$ is the equivalence of the scalar square root function. Furthermore, it can be shown that the inverse of the square root is equivalent to the square root of the inverse,

$$(A^{1/2})^{-1} = (A^{-1})^{1/2}$$
(8.68)

often denoted $A^{-1/2}$. The determinant of $A^{-1/2}$ equals the inverse of the square root of the determinant,

$$|A^{-1/2}| = |A|^{-1/2} = \frac{1}{\sqrt{|A|}}$$
(8.69)

With this at hand, consideran an *n*-dimensional Gaussian vector, $X \sim N(\mu, \Lambda_X)$. then, the normalised vector

$$Y = \Lambda_X^{-1/2} (X - \mu)$$
(8.70)

has mean and covariance according to

$$E[Y] = E[\Lambda_X^{-1/2}X - \Lambda_X^{-1/2}\mu] = \Lambda_X^{-1/2}E[X] - \Lambda_X^{-1/2}\mu = \mathbf{0}$$
(8.71)

and

$$\Lambda_{Y} = \Lambda_{X}^{-1/2} \Lambda_{X} \Lambda_{X}^{-1/2} = \Lambda_{X}^{-1/2} \Lambda_{X}^{1/2} \Lambda_{X}^{1/2} \Lambda_{X}^{-1/2} = I$$
(8.72)

Hence, $\Upsilon \sim N(0, I)$ is normalised Gaussian distributed with zero mean and covariance *I*. Since Λ_X is assumed to have full rank, $|\Lambda_X| > 0$, there exists a density function that is uniquely determined by the mean and covariance. To find this, use that the entries of Υ are independent and write the density function as

$$f_{Y}(y) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y_{i}^{2}} = \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2}\sum_{i}y_{i}^{2}} = \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2}y^{T}y}$$
(8.73)

The entropy for this vector follows from the independency as

$$H(\mathbf{Y}) = \sum_{i=1}^{n} H(Y_i) = n \frac{1}{2} \log(2\pi e) = \frac{1}{2} \log(2\pi e)^n$$
(8.74)

To calculate the entropy for the vector $X \sim N(\mu, \Lambda_X)$, first consider the density function. Assume a general *n*-dimensional random vector **Z** with density function $f_Z(z)$, and let *A* be an $n \times n$ non-singular matrix and **a** an *n* dimensional

8.2. Gaussian distribution

static vector. Then, form X = AZ + a, which leads to that $Z = A^{-1}(X - a)$ and dx = |A|dz, where |A| is the Jacobian for the variable change. Thus the density function for X can then be written as

$$f_{X}(x) = \frac{1}{|A|} f_{Z} (A^{-1}(x - a))$$
(8.75)

which gives the entropy as

$$H(\mathbf{X}) = -\int_{\mathbb{R}^n} f_{\mathbf{X}}(\mathbf{x}) \log f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$

$$= -\int_{\mathbb{R}^n} \frac{1}{|A|} f_{\mathbf{Z}} (A^{-1}(\mathbf{x} - \mathbf{a})) \log \frac{1}{|A|} f_{\mathbf{Z}} (A^{-1}(\mathbf{x} - \mathbf{a})) d\mathbf{x}$$

$$= -\int_{\mathbb{R}^n} f_{\mathbf{Z}}(\mathbf{z}) \log \frac{1}{|A|} f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}$$

$$= -\int_{\mathbb{R}^n} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} + \log |A| \int_{\mathbb{R}^n} f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}$$

$$= H(\mathbf{Z}) + \log |A|$$
(8.76)

Hence, the following result can be stated, similar to the one-dimensional case.

THEOREM 8.7 Let **Z** is an *n*-dimensional random vector with entropy $H(\mathbf{Z})$. If *A* is an $n \times n$ non-singular matrix and *a* an *n*-dimensional static vector, then, $\mathbf{X} = A\mathbf{Z} + \mathbf{a}$ has the entropy

$$H(\mathbf{X}) = H(\mathbf{Z}) + \log|A| \tag{8.77}$$

To get back from the normalised Gaussian vector **Y** to $X \sim N(\mu, \Lambda_X)$, use the function

$$X = \Lambda_X^{1/2} Y + \mu \tag{8.78}$$

The above theorem states that the entropy for the vector X is

$$H(\mathbf{X}) = \frac{1}{2} \log(2\pi e)^n + \log|\Lambda_X|^{1/2}$$

= $\frac{1}{2} \log(2\pi e)^n |\Lambda_X| = \frac{1}{2} \log|2\pi e \Lambda_X|$ (8.79)

THEOREM 8.8 Let $X = (X_1, ..., X_n)^T$ be an *n*-dimensional Gaussian vector with mean $\boldsymbol{\mu} = (\mu_1, ..., \mu_n)^T$ and covariance matrix $\Lambda_X = E[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T]$, i.e. $\boldsymbol{X} \sim N(\boldsymbol{\mu}, \Lambda_X)$. Then the differential entropy of the vector is

$$H(\mathbf{X}) = \frac{1}{2} \log |2\pi e \Lambda_{\mathbf{X}}| \tag{8.80}$$

8. Information measures for continuous variables

An alternative way to show the above theorem is to first derive the density function for *X* and then use this to derive the entropy. Since this derivation will be reused later, it is also shown here. So, again use the variable change $Y = \Lambda_X^{-1/2} (X - \mu)$, where the Jacobian is $|\Lambda_X^{-1/2}| = \frac{1}{\sqrt{|\Lambda_X|}}$. Then

$$f_{X}(\mathbf{x}) = \frac{1}{\sqrt{|\Lambda_{X}|}} \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2}(\Lambda_{X}^{-1/2}(\mathbf{x}-\boldsymbol{\mu}))^{T}(\Lambda_{X}^{-1/2}(\mathbf{x}-\boldsymbol{\mu}))}$$
$$= \frac{1}{\sqrt{|2\pi\Lambda_{X}|}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T}\Lambda_{X}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$
(8.81)

which is the density function normally used for an *n*-dimensional Gaussian distribution.

Before progressing towards the entropy, the argument in the exponent needs some extra attension. Assume a random variable X (not necessarily Gaussian) with mean $E[X] = \mu$ and covariance matrix $\Lambda_X = E[(X - \mu)(X - \mu)^T]$, and form $Y = \Lambda_X^{-1/2}(X - \mu)$ to get a normalised version with $E[Y] = \mathbf{0}$ and $\Lambda_Y = I$. Then

$$E[(\mathbf{X} - \boldsymbol{\mu})^T \Lambda_X^{-1} (\mathbf{X} - \boldsymbol{\mu})] = E[(\mathbf{X} - \boldsymbol{\mu})^T \Lambda_X^{-1/2} \Lambda_X^{-1/2} (\mathbf{X} - \boldsymbol{\mu})]$$

= $E[\mathbf{Y}^T \mathbf{Y}] = E[\sum_{i=1}^n Y_i^2] = \sum_{i=1}^n 1 = n$ (8.82)

If **X** is Gaussian with $\mathbf{X} \sim N(\boldsymbol{\mu}, \Lambda_X)$, then Y is normalised Gaussian, $\mathbf{Y} \sim N(\mathbf{0}, I)$, and so is each of the entries, $Y_i \sim N(0, 1)$. Since

$$Z = (\mathbf{X} - \boldsymbol{\mu})^T \Lambda_X^{-1} (\mathbf{X} - \boldsymbol{\mu}) = \sum_{i=1}^n Y_i^2 \sim \chi^2(n)$$
(8.83)

this also gives the mean of a Chi-square distributed random variable, E[Z] = n.

The entropy for the Gaussian distribution can now be derived using the density function above as

$$H(\mathbf{X}) = E_f \left[-\log \frac{1}{\sqrt{|2\pi\Lambda_X|}} e^{-\frac{1}{2}(\mathbf{X}-\boldsymbol{\mu})^T \Lambda_X^{-1}(\mathbf{X}-\boldsymbol{\mu})} \right]$$

= $E_f \left[\frac{1}{2} \log |2\pi\Lambda_X| + \frac{1}{2} (\mathbf{X}-\boldsymbol{\mu})^T \Lambda_X^{-1} (\mathbf{X}-\boldsymbol{\mu}) \log e \right]$
= $\frac{1}{2} \log |2\pi\Lambda_X| + \frac{1}{2} n \log e$
= $\frac{1}{2} \log (e^n |2\pi\Lambda_X|) = \frac{1}{2} \log |2\pi e \Lambda_X|$ (8.84)

8.2. Gaussian distribution

_

Looking back at Lemma 8.4 and Theorem 8.5, the corresponding result for the *n*-dimensional case can be derived. Starting with the lemma, assume that g(x) is a density function for a normal distribution, $N(\mu, \Lambda_X)$, and that f(x) is an arbitrary density function with the same mean μ and covariance matrix Λ_X . Then, the expectation of $-\log g(X)$ with respect to g(x) and f(x) are equal. This can be seen from the exact same derivation as above when f(x) is non-Gaussian. Hence, the following lemma, corresponding to Lemma 8.4, can be stated.

LEMMA 8.9 Let g(x) be an *n*-dimensional Gaussian distribution, $N(\mu, \Lambda_X)$, with mean μ and covariance matrix Λ_X . If f(x) is an arbitrary distribution with the same mean and covariance matrix, then

$$E_f\left[-\log g(\mathbf{X})\right] = E_g\left[-\log g(\mathbf{X})\right] \tag{8.85}$$

To see that the Gaussian distribution maximizes the entropy consider

_

$$H_{g}(\mathbf{X}) - H_{f}(\mathbf{X}) = E_{g}\left[-\log g(\mathbf{X})\right] - E_{f}\left[-\log f(\mathbf{X})\right]$$
$$= E_{f}\left[-\log g(\mathbf{X})\right] - E_{f}\left[-\log f(\mathbf{X})\right]$$
$$= E_{f}\left[\log \frac{f(\mathbf{X})}{g(\mathbf{X})}\right] = D(f||g) \ge 0$$
(8.86)

THEOREM 8.10 The *n*-dimensional Gaussian distribution maximises the differential entropy over all *n*-dimensional distributions with mean μ and covariance matrix Λ_X .