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30 8. Information measures for continuous variables

8.2.1 Multi-dimensional Gaussian distribution

In the previous of this section the Gaussian distribution has been treated with
extra care. Here the theory is expanded to the n-dimensional case. As a first step
the Gaussian distribution will be defined for an n-dimensional random vector.
In this the density function is defined and the differntial entropy derived.

A random n-dimensional column vector X = (X1, . . . , Xn)T , where T denotes
the matrix transpose, is said to be Gaussian distributed if every linear combi-
nation of its entries forms a scalar Gaussian variable, i.e. if aTX = ∑i aiXi ∼
N(µ, σ) for every real-valued vector a = (a1, . . . , aN)

T . Since any linaer com-
bination of Gaussian variables is again Gaussian, the way to achieve this is to
consider the case where each entrence in X is Gaussian with mean µi and vari-
ance σ2

i , i.e. Xi ∈ N(µi, σi). The mean of the vector X is

µ = E
[
X
]
= (µ1, . . . , µn)

T (8.62)

and the covariance matrix

ΛX = E
[
(X − µ)(X − µ)T] = (E

[
(Xi − µi)(Xj − µj)

])
i,j=1,...,n

(8.63)

Clearly the diagonal elements of ΛX contains the variances of X. The Gaussian
distribution is denoted X ∼ N(µ, ΛX).2

To find the density function of the distribution consider a general scaling and
translation of a random variable X. Let X be an n-dimensional random variable
according to an n-dimensional distribution with mean µ and covariance ΛX . If
A is a square matrix of full rank and a an n-dimensional column vector, a new
random vector Y = AX + a is formed. The mean and covariance of Y is

E
[
Y
]
= E

[
AX + a

]
= AE

[
X
]
+ a = Aµ + a (8.64)

ΛY = E
[
(Y − E[Y ])(Y − E[Y ])T]

= E
[
AX + a− Aµ− a)(AX + a− Aµ− a)T]

= E
[(

A(X − µ)
)(

A(X − µ)
)T]

= E
[
A
(
X − µ

)(
X − µ

)T AT]
= AE

[(
X − µ

)(
X − µ

)T]AT = AΛX AT (8.65)

The idea is to transform the Gaussian vector X into a normalised Gaussian
vector instead. In the case when X is a one dimensional random variable, this
is done with Y = X−µ

σ . To see how the corresponding equation looks for the

2In this text it is assumed that ΛX has full rank. In the case it lower rank the dimensionality of
the vector can be decreased.



i
i

“InfoTheory” — 2016/5/22 — 21:15 — page 31 — #37 i
i

i
i

i
i

8.2. Gaussian distribution 31

n dimensional case, some definitions and results from matrix theory is needed.
For a more thorough treatment of this topic refere to e.g. [37]. Most of the results
here will be given without any proofs.

Firstly, the covariance matrix is characterised to see how the square root of its
inverse can be derived.

DEFINITION 8.6 A real matrix A is symmetric3 if it is symmetric along the di-
agonal, AT = A. �

If the matrix A is symmetric and has an inverse, the unity matrix can be used to
get I = AA−1 = AT A−1 = (A−T A)T = A−T A, where −T denotes the transpose
of the inverse. Then, A−1 = IA−1 = A−T AA−1 = A−T . Hence, the inverse
of a symmetric matrix is again symmetric. From its definition it is directly seen
that the covariance matrix is symmetric, since E[(Xi − µi)(Xj − µj)] = E[(Xj −
µj)(Xi − µi)].

In the one-dimensional case the variance is non-negative. In matrix theory this
corresponds to that the covariance matrix is positive semi-definite.

DEFINITION 8.7 A real matrix A is positive definite if aT Aa > 0, for all vectors
a 6= 0. �

DEFINITION 8.8 A real matrix A is positive semi-definite, or non-zero definite, if
aT Aa ≥ 0, for all vectors a 6= 0. �

Consider the covariance matrix ΛX and a real valued column vector a 6= 0.
Then

aTΛXa = aTE
[
(X − µ)(X − µ)T]a

= E
[
aT(X − µ)(X − µ)Ta

]
= E

[
(aTX − aTµ)(aTX − aTµ)T)] = V

[
aTX

]
≥ 0 (8.66)

since the variance of a one-dimensional random variable is non-negative. To
conclude, the following theorem is obtained.

THEOREM 8.6 Given an n-dimensional random vector X = (X1, . . . , Xn)T with
mean E

[
X
]
= (µ1, . . . , µn)T , the covariance matrix ΛX = E

[
(X − µ)(X − µ)T]

is symmetric and positive semi-definite. �

3A complex matrix A is Hermitian if A∗ = A, where ∗ denote complex conjugate and transpose.
For a real matrix it is equivalent to being symmetric, i.e. AT = A. In MATLAB the notation A′
means Hermitian transpose, A∗
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32 8. Information measures for continuous variables

In e.g. [37] it can be found that for every symmetric positive semi-definite ma-
trix A, there exists a unique symmetric positive semi-definite matrix A1/2 such
that (

A1/2)2
= A (8.67)

This matrix A1/2 is the equivalence of the scalar square root function. Further-
more, it can be shown that the inverse of the square root is equivalent to the
square root of the inverse,(

A1/2)−1
=
(

A−1)1/2 (8.68)

often denoted A−1/2. The determinant of A−1/2 equals the inverse of the square
root of the determinant,∣∣A−1/2∣∣ = |A|−1/2 =

1√
|A|

(8.69)

With this at hand, consideran an n-dimensional Gaussian vector, X ∼ N(µ, ΛX).
then, the normalised vector

Y = Λ−1/2
X (X − µ) (8.70)

has mean and covariance according to

E
[
Y
]
= E

[
Λ−1/2

X X −Λ−1/2
X µ

]
= Λ−1/2

X E
[
X
]
−Λ−1/2

X µ = 0 (8.71)

and

ΛY = Λ−1/2
X ΛXΛ−1/2

X = Λ−1/2
X Λ1/2

X Λ1/2
X Λ−1/2

X = I (8.72)

Hence, Y ∼ N(0, I) is normalised Gaussian distributed with zero mean and
covariance I. Since ΛX is assumed to have full rank, |ΛX | > 0, there exists
a density function that is uniquely determined by the mean and covariance.
To find this, use that the entries of Y are independent and write the density
function as

fY (y) =
n

∏
i=1

1√
2π

e−
1
2 y2

i =
1

(2π)n/2 e−
1
2 ∑i y2

i =
1

(2π)n/2 e−
1
2 yTy (8.73)

The entropy for this vector follows from the independency as

H(Y) =
n

∑
i=1

H(Yi) = n
1
2

log(2πe) =
1
2

log(2πe)n (8.74)

To calculate the entropy for the vector X ∼ N(µ, ΛX), first consider the density
function. Assume a general n-dimensional random vector Z with density func-
tion fZ(z), and let A be an n× n non-singular matrix and a an n dimensional
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8.2. Gaussian distribution 33

static vector. Then, form X = AZ + a, which leads to that Z = A−1(X − a) and
dx = |A|dz, where |A| is the Jacobian for the variable change. Thus the density
function for X can then be written as

fX(x) =
1
|A| fZ

(
A−1(x− a)

)
(8.75)

which gives the entropy as

H(X) = −
∫

Rn
fX(x) log fX(x)dx

= −
∫

Rn

1
|A| fZ

(
A−1(x− a)

)
log

1
|A| fZ

(
A−1(x− a)

)
dx

= −
∫

Rn
fZ(z) log

1
|A| fZ(z)dz

= −
∫

Rn
fZ(z) log fZ(z)dz + log |A|

∫
Rn

fZ(z)dz

= H(Z) + log |A| (8.76)

Hence, the following result can be stated, similar to the one-dimensional case.

THEOREM 8.7 Let Z is an n-dimensional random vector with entropy H(Z). If
A is an n × n non-singular matrix and a an n-dimensional static vector, then,
X = AZ + a has the entropy

H(X) = H(Z) + log |A| (8.77)

�

To get back from the normalised Gaussian vector Y to X ∼ N(µ, ΛX), use the
function

X = Λ1/2
X Y + µ (8.78)

The above theorem states that the entropy for the vector X is

H(X) =
1
2

log(2πe)n + log |ΛX |1/2

=
1
2

log(2πe)n|ΛX | =
1
2

log |2πeΛX | (8.79)

THEOREM 8.8 Let X = (X1, . . . , Xn)T be an n-dimensional Gaussian vector
with mean µ = (µ1, . . . , µn)T and covariance matrix ΛX = E

[
(X− µ)(X− µ)T],

i.e. X ∼ N(µ, ΛX). Then the differential entropy of the vector is

H(X) =
1
2

log |2πeΛX | (8.80)

�
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34 8. Information measures for continuous variables

An alternative way to show the above theorem is to first derive the density
function for X and then use this to derive the entropy. Since this derivation
will be reused later, it is also shown here. So, again use the variable change
Y = Λ−1/2

X (X − µ), where the Jacobian is |Λ−1/2
X | = 1√

|ΛX |
. Then

fX(x) =
1√
|ΛX |

1
(2π)n/2 e−

1
2 (Λ

−1/2
X (x−µ))T(Λ−1/2

X (x−µ))

=
1√
|2πΛX |

e−
1
2 (x−µ)TΛ−1

X (x−µ) (8.81)

which is the density function normally used for an n-dimensional Gaussian
distribution.

Before progressing towards the entropy, the argument in the exponent needs
some extra attension. Assume a random variable X (not necessarily Gaussian)
with mean E[X] = µ and covariance matrix ΛX = E

[
(X − µ)(X − µ)T], and

form Y = Λ−1/2
X (X − µ) to get a normalised version with E[Y ] = 0 and ΛY = I.

Then

E
[
(X − µ)TΛ−1

X (X − µ)
]
= E

[
(X − µ)TΛ−1/2

X Λ−1/2
X (X − µ)

]
= E

[
YTY

]
= E

[ n

∑
i=1

Y2
i

]
=

n

∑
i=1

1 = n (8.82)

If X is Gaussian with X ∼ N(µ, ΛX), then Y is normalised Gaussian, Y ∼
N(0, I), and so is each of the entries, Yi ∼ N(0, 1). Since

Z = (X − µ)TΛ−1
X (X − µ) =

n

∑
i=1

Y2
i ∼ χ2(n) (8.83)

this also gives the mean of a Chi-square distributed random variable, E[Z] = n.

The entropy for the Gaussian distribution can now be derived using the density
function above as

H(X) = E f

[
− log

1√
|2πΛX |

e−
1
2 (X−µ)TΛ−1

X (X−µ)

]

= E f

[
1
2

log |2πΛX |+
1
2
(X − µ)TΛ−1

X (X − µ) log e

]

=
1
2

log |2πΛX |+
1
2

n log e

=
1
2

log
(
en|2πΛX |

)
=

1
2

log |2πeΛX | (8.84)
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8.2. Gaussian distribution 35

Looking back at Lemma 8.4 and Theorem 8.5, the corresponding result for the
n-dimensional case can be derived. Starting with the lemma, assume that g(x)
is a density function for a normal distribution, N(µ, ΛX), and that f (x) is an
arbitrary density function with the same mean µ and covariance matrix ΛX .
Then, the expectation of − log g(X) with respect to g(x) and f (x) are equal.
This can be seen from the exact same derivation as above when f (x) is non-
Gaussian. Hence, the following lemma, corresponding to Lemma 8.4, can be
stated.

LEMMA 8.9 Let g(x) be an n-dimensional Gaussian distribution, N(µ, ΛX), with
mean µ and covariance matrix ΛX . If f (x) is an arbitrary distribution with the
same mean and covariance matrix, then

E f
[
− log g(X)

]
= Eg

[
− log g(X)

]
(8.85)

�

To see that the Gaussian distribution maximizes the entropy consider

Hg(X)− H f (X) = Eg
[
− log g(X)

]
− E f

[
− log f (X)

]
= E f

[
− log g(X)

]
− E f

[
− log f (X)

]
= E f

[
log

f (X)

g(X)

]
= D

(
f
∣∣∣∣g) ≥ 0 (8.86)

THEOREM 8.10 The n-dimensional Gaussian distribution maximises the dif-
ferential entropy over all n-dimensional distributions with mean µ and covari-
ance matrix ΛX . �


