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54 9. Gaussian Channel

9.2.2 MIMO–The multi-dimensional Gaussian channel

The Multiple In, Multiple Out (MIMO) channel referes to a radio communica-
tion setup where several transmit and receive antennas are used together. The
transmissions over the antennas use the the same communication bandwidth,
which mean that all receive antenas get contributions from all transmit anten-
nas, see Figure 9.7. For each path, from one transmit antenna to one receive
antenna, there is an attenuation factor, and if all transmission paths can be con-
sidered independent there are significant gains compared to the single antenna
alternative. In many standards today, for example in WiFi 802.11n and LTE,
there are suport for MIMO in the physical link. For the next mobile system, 5G,
it will be an essential part of increasing the available bit rates in the system. In
this section the scheme will be considered from an information theoretic view
and the capacity for the system will be derived.
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Figure 9.7: The antenna grid in a MIMO setup.

The transmission system shown in Figure 9.7 uses nt transmit antennas and nr
receive antennas. The attenuation factors between the transmit and received
nodes can be given in the nr × nt matrix

H =


h11 h12 · · · h1nt
h21 h22 · · · h2nt

...
...

. . .
...

hnr1 hnr2 · · · hnrnt

 (9.51)

For simplicity it is assumed that the channel attenuation matrix has full rank,
rank(H) = min{nt, nr}. Assign the input, noise and the output as the column
vectors

X =


X1
X2
...

Xnt

 Z =


Z1
Z2
...

Znr

 Y =


Y1
Y2
...

Ynr

 (9.52)
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9.2. Parallel Gaussian Channels 55

where the noise is an nr-dimensional Gaussian vector, Z ∼ N(0, ΛZ) where
ΛZ = E

[
ZZT] is the covariance matrix. The output is derived as Y = HX + Z

and hence, in this format the MIMO channel constitute a multi-dimensional
Gaussian channel with attenuation matrix H. As in the one-dimensional case,
the total power used at the transmitter side is the limiting factor of the commu-
nication link. Constraining it to P, the sum of the power consummations for
the transmitted vector must not exceed this. Since the diagonal elements in ΛX
is Pi = E

[
X2

i
]
, it can be written as trΛX ≤ P. The notation trA denotes the trace

of the matrix A, which is the sum of the diagonal elements. Furthermore, it can
be shown that the trace also equals the sum of the eigenvalues of the matrix A.

The first step in deriving the channel capacity for the MIMO channel, the mu-
tual information between the input and output vectors can be bounded as

I(X; Y) = H(Y)− H(Y |X)

= H(Y)− H(Z)

= H(Y)− 1
2

log
∣∣2πeΛZ

∣∣
≤ 1

2
log
∣∣2πeΛX

∣∣− 1
2

log
∣∣2πeΛZ

∣∣
=

1
2

log
∣∣ΛXΛ−1

Z

∣∣ (9.53)

where it is used in the second equality that X and Z are independent, in the
third equality the differential entropy derived in (8.79) and (8.84), and in the
inequality Theorem 8.10. The bound is fulfilled with equality if and only if Y is
Gaussian, i.e. Y ∼ N(0, ΛY). To achieve this distribution, notice that the sum of
two Gaussian variables is again Gaussian. Thus, by letting the input vector be
Gaussian, X ∼ N(0, ΛX), the output Y will also be Gaussian with covariance
matrix

ΛY = E
[
YYT] = E

[
(HX + Z)(HX + Z)T]

= E
[
(HX + Z)(XT HT + ZT)

]
= HE

[
XXT]HT + E

[
ZZT]

= HΛX HT + ΛZ (9.54)

where it is used that since X and Z are independent, E
[
HXZT] = 0. By max-

imising the mutual information using a Gaussian distributed input vector gives
that the general form of the channel capacity can be written as

C = max
f (x),trΛX=P

I(X; Y)

= max
trΛX=P

1
2

log
∣∣(HΛX HT + ΛZ)Λ−1

Z

∣∣
= max

trΛX=P

1
2

log
∣∣I + HΛX HTΛ−1

Z

∣∣ (9.55)
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56 9. Gaussian Channel

Since all transmissions in Figure 9.7 work over the same bandwidth it is rea-
sonable to assume that the noise for the received symbols are identically dis-
tributed and independent. Then the covariance matrix becomes a diagonal ma-
trix with the noise variance N, i.e. ΛZ = NInr , where Inr is the nr × nr unit
matrix. The capacity in (9.55) becomes

C = max
trΛX=P

1
2

log
∣∣∣I + 1

N
HΛX HT

∣∣∣ (9.56)

To get a better understanding of how the distribution of X can be assign, the
channel attenuation matrix can be composed by singular value decomposition,
SVD5,

H = USVT (9.57)

where U and V are orthogonal matrices and S a diagonal (in general non-
square) matrix with the singular values si, i = 1, . . . , n along the diagonal. The
fact that U and V are orthogonal means they have unit determinant and that
the transpose is the inverse, i.e.

|U| = |UT | = |V| = |VT | = 1 (9.58)

and

UUT = UTU = Inr and VVT = VTV = Int (9.59)

Inserting (9.57) in (9.56) gives

Thus, the capacity can be rewritten as

C = max
trΛX=P

1
2

log
∣∣∣I + 1

N
(USVT)ΛX(USVT)T

∣∣∣
= max

trΛX=P

1
2

log
∣∣∣UUT +

1
N

USVTΛXVSTUT
∣∣∣

= max
trΛX=P

1
2

log
∣∣∣I + 1

N
SVTΛXVST

∣∣∣ (9.60)

Introducing a basis change of the input vector, such that X̃ = VTX, gives the
covariance matrix ΛX̃ = E

[
VTX(VTX)T] = E

[
VTXXTV

]
= VTΛXV.

Two matrices A and B, they are said to be similar if there exists a nonsingular
matrix T such that A = TBTT . From matrix theory it is known that similar
matrices have the same set of eigenvalues, and hence the same trace and deter-
minant. This means that ΛX and ΛX̃ are similar and that they have the same
trace, trΛX = trΛX̃ . Thus, the power constraint in the capacity formula can be
considered over X̃ instead of X, and the capacity becomes

C = max
trΛX̃=P

1
2

log
∣∣∣I + 1

N
SΛX̃ST

∣∣∣ (9.61)

5In MATLAB the command [U,S,V]=svd(A) gives the singular value decomposition.
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9.2. Parallel Gaussian Channels 57

Since ΛX̃ is a covariance matrix it is positive semi-definite, i.e. aTΛX̃a ≥ 0 for
all vectors a. From aTSΛX̃STa = ãTΛX̃ ã ≥ 0, where ã = STa, it is seen that
also SΛX̃ST is positive semi-definite.

The Hadamard inequality states that if a matrix A is positive semi-definite, then
the determinant is bounded by the product of the diagonal entries, |A| ≤ ∏i aii.
Clearly there is equality if A is a diagonal matrix. Since both I and S in the
argument I + 1

N SΛX̃ST are diagonal, the capacity can obtained as

C = max
∑i P̃i=P

1
2

log ∏
i

(
1 +

s2
i

N
P̃i

)
= max

∑i P̃i=P
∑

i

1
2

log
(

1 +
s2

i
N

P̃i

)
(9.62)

where ΛX̃ = diag(P̃1, . . . , P̃nt). From the assumption that H has full rank the
number of non-zero singular values is n = min{nt, nr}.

Hence, the MIMO channel is equivalent to a channel model containing parallel
Gaussian channels with attenuation given by the singular values of H. As be-
fore, to optimise the usage of the channel the power levels P̃i can be found by
water-filling. The result is summarised in the following theorem.

THEOREM 9.5 Given a MIMO channel with nt transmit antennas, nr receive
antennas and the attenuation matrix H, the capacity is given by

C =
n

∑
i=1

1
2

log
(

1 +
s2

i
N

P̃i

)
(9.63)

where the power levels P̃i is found byP̃i =
(

B− N
s2

i

)+
∑i P̃i = P

(9.64)

and si are the n = min{nt, nr} singular values in the singular value decompo-
sition H = USVT . �

The optimising distribution is X̃ ∼ N(0, ΛX̃) where ΛX̃ = diag(P̃1, . . . , P̃nt).
This corresponds to the input distribution X ∼ N(0, ΛX) where ΛX = VΛX̃VT .

The above derivation for the MIMO channel assumes that both the transmitter
and receiver have full knowledge of the channel matrix H. However, MIMO
is a typical radio channel and often the attenuation changes rapidly over time,
which makes estimation a hard task. Another reasonable assumption would
then be that the receiver has full knowledge of the channel, while the transmit-
ter does not know H. In this case the optimal distribution on the power levels is
obtained from a uniform distribution, P̃i = P/nt. In this case the corresponding
capacity is given by the next theorem.
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58 9. Gaussian Channel

THEOREM 9.6 Given a MIMO channel with nt transmit antennas and nr re-
ceive antennas. If the channel attenuation matrix H is not known by the trans-
mitter but perfectly known by the receiver, the capacity is given by

C =
n
2

log
(

1 +
s2

i P
Nnt

)
(9.65)

where si are n = min{nt, nr} the singular values in the singular value decom-
position H = USVT . �


