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Introduction

Lecturer and course responsible: Fredrik Rusek, E:2377
5 scheduled lectures

Teaching assistant: Joao Vieira,
Computer help sessions in the lab, E:4123. Tuesdays and Fridays.

Email: {fredrik.rusek,joao.vieira}@eit.lth.se
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Introduction

Ultimate goal for PWC:
Two computers should communicate via speaker/microphones

We aim at a file-transfer and/or a conversation via the keyboards
Some form of advanced system should be implemented, e.g. MIMO, OFDM, Turbo
coding etc

The projects should be performed in groups of TWO students (HARD LIMIT)
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PWC 1

In the first part of PWC we only work in software. For a passing grade you must solve
three tasks:

1. A digital baseband BPSK system should be implemented in C++ and its performance
should be measured and verified against theoretical results

Pe = Q

(√
d2min

Eb

N0

)

2. Later in PWC you will encounter physical passband signals at the input of the micro-
phone. In the first part, we will provide each group with one such signal; the bits carried
by the signals correspond to the ASCII code of a secret password. If you can decode the
signals and provide me with the password, you have passed task 2.

3. Same as 2 but with OFDM transmission and convolutional code.
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Example

Assume that you receive the following noisy signal

0 5 10 15 20 25 30 35
−4

−3

−2

−1

0

1

2

3

4

You must remove the noise...Done!
Decode the bits: 1 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 1.....
Convert to ASCII: You have passed PWC1, congratulations......
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Introduction

Formal descriptions of the tasks can be found online.
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Basics of Digital Communications

This is a recall of baseband digital communications....

We need to transmit a bit sequence {uk} = 0111010.....
Map to symbols {ak}

BPSK : ak =

{
1, uk = 0

−1, uk = 1

QPSK : ak =


1, u2ku2k+1 = 00

i, u2ku2k+1 = 01

−1, u2ku2k+1 = 10

−i, u2ku2k+1 = 11
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Basics of Digital Communications

Each symbol is carried by a base pulse p(t) of length T , e.g. the half-cycle sinus

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

t/T

p(t)
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Basics of Digital Communications

So the transmission of bits 0 1 0 0 0 0 1 generates the pulse train y(t)

−1 0 1 2 3 4 5 6 7 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t/T

Transmission of
+ − + + + + −

Mathematically we have

y(t) =
∑
k

akp(t− kTs)

Note that Ts is the symbol time while T is the duration of the base pulse p(t).
How does T and Ts relate in this example?T = Ts
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Basics of Digital Communications

To avoid intersymbol interference one can use T < Ts

−2 0 2 4 6 8

−1

−0.5

0

0.5
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t/T

In this example we have T = Ts/2
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Basics of Digital Communications

The channel model assumed in this review is a pure AWGN channel

r(t)y(t)

AWGN

Where the noise n(t) satisfies E{n∗(t)n(t+ τ )} = δ(τ )N0/2; such a noise process must
have power spectral density

f

R(f)

N0

2
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Basics of Digital Communications

What does WGN look like?
Can we show an example?

Consider the power of the process

P =

∫
R(f )df

n(t) has infinite power!

Thus, not possible to show an example of WGN
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Basics of Digital Communications

Explanation: Every signal we ever see in reality has been filtered by some low-pass filter.
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Basics of Digital Communications

Mathematically, in what way should the receiver process the received signal r(t).

In other words

.....?â = .....?argmin
x

∫ ∞
−∞
|r(t)−

∑
k

xkp(t− kTs)|2dt
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Basics of Digital Communications

Mathematically, in what way should the receiver process the received signal r(t).

Maximum-likelihood detection is the answer!

â = argmax
a

Prob{r(t)|a}
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Basics of Digital Communications

Mathematically, in what way should the receiver process the received signal r(t).

Maximum-likelihood is equivalent to minimum Euclidean distance detection

â = argmin
a

∫ ∞
−∞
|r(t)−

∑
k

akp(t− kTs)|2dt

Fredrik Rusek: “PWC, Lecture 1” September 2014



Basics of Digital Communications

To decode the (complex valued) signal r(t), we pass r(t) through a matched filter z(t)

z(t) = p(−t)

For symmetric pulses p(t), we get

z(t) = p(t)

Let

x(t) = r(t) ⋆ p(t)

=
∑
k

akg(t− kTs) + η(t)

where η(t) is n(t) ⋆ p(t) and g(t) = p(t) ⋆ z(t). Take samples every Ts seconds:
xk = x(kTs). Then

xk = Epak + ηk

where ηk is a complex Gaussian random variable with variance EpN0, that is EpN0/2
per dimension!
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Basics of Digital Communications

Energy computations and error probability:

The energy per transmitted symbol Es is given by: Es =

∫
p2(t)dt︸ ︷︷ ︸
Ep

while the energy

per transmitted bit is

Eb =

{
Es, BPSK

Es/2, QPSK

The physical minimum Euclidean distance is

D2
min =

{
4Ep, BPSK

2Ep, QPSK

In both cases we end up with a normalized distance d2min = 2. The error probability is
given by

Pe ≈ Q

(√
2
Eb

N0

)
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Discrete-Time Implementations

In a computer-based package such as Matlab or C/C++, we cannot represent the signals
y(t) as continuous time signals. Hence we must work with sampled versions.

Let fs be the sample rate in samples/second and N be the number of samples per
symbol.

In PWC2, fs = 44100 samples/second

We get that Ts =
N
fs

The symbol rate becomes

Rs =
fs
N
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Discrete-Time Implementations

We must sample the base pulse p(t). Assume a sample interval of Ts/N seconds
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T
s

This is wrong!
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Discrete-Time Implementations

We must sample the base pulse p(t). N+1 samples per symbol implies sample interval
of Ts/N seconds
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Discrete-Time Implementations

Explanation: Plot two consecutive pulses.
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Should be one point!

There should only be one point.
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Discrete-Time Implementations

Correct sampling!

0 0.2 0.4 0.6 0.8 1
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Represent the samples in a vector

p = [0 0.159 .309 . . .]
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Discrete-Time Implementations

A sampled transmission signal of + – + + + – +

0 1 2 3 4 5 6 7
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−0.8
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t/T
s

Slightly harder mathematical representation. Let {bk} be a zero-padded version of {ak}

b = [a1 00 . . . 0︸ ︷︷ ︸
N−1

a2 00 . . . 0︸ ︷︷ ︸
N−1

a3 00 . . . 0︸ ︷︷ ︸
N−1

a4 . . .]

Then,
yk =

∑
ℓ

bℓpk−ℓ or simply y = b ⋆ p
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Discrete-Time Implementations

Convolutions in discrete-time:

A convolution of x(t) and y(t) in continuous time is carried out as∫
x(τ )y(t− τ )dτ (1)

Let x and y be sampled version of x(t) and y(t); the sampling rate is fs. The discrete
time version of (1) is

1

fs

∑
ℓ

xℓyk−ℓ

The discrete time convolution must be scaled by the sampling rate!. 1/fs works as dτ
in (1).

The energy of the pulse p(t) must be approximated as

Ep =
1

fs

∑
k

p2k
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Discrete-Time Implementations

Matched filters in discrete-time:

The pulse train p should be filtered by a discrete-time matched filter. For symmetric
pulses, we can take this mathched filter as z = p where p includes the last sample!, i.e.
the length of p is N +1. (This is however not crucial.) Then the output of the matched
filter is (N = 20)

0 20 40 60 80 100 120 140 160
−10

−8

−6

−4

−2

0

2

4

6

8

10

samples

Peak at
sample 21

The number of samples in y is N×number of symbols and the length of the filter output
is N +N × number of symbols. The peak occurs at samples 1 + kN , k = 1, 2, 3....
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Discrete-Time Implementations

If there is a guard band (T < Ts), then the pulse is not symmetric and we can not take
z = p. We must then use

zk = pN+2−k, k = 1...N + 1

It is still true that the peaks occur at samples 1 + kN , k = 1, 2, 3....
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Discrete-Time Implementations
Implementation of discrete-time AWGN:

Until now we have constructed a modulation signal y in discrete time. We now seek a
noise vector n to be added to y that represents continuous time AWGN (that has inf
power).

We have that both the real and the imaginary parts of the samples of

η(t) = n(t) ⋆ z(t)

are zero-mean and have variance EpN0/2.

In discrete-time, a sample of the filtered noise process is given by

ηk =
1

fs

∑
ℓ

nℓzk−ℓ

Assume that the variance of each nk is σ2
n. From probability theory it follows that ηk

has variance σ2
n

∑
z2k/f

2
s .

Since

σ2
n

∑
k

z2k/f
2
s = Ep

N0

2
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Discrete-Time Implementations
we get that

σ2 = Ep
N0

2

f 2
s∑
k z

2
k

=
N0

2
fs

Thus, The sampling rate affects the variance of the discrete time representation of
continuous AWGN
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Carrier Transmission

The transmitted signal is y(t) =
∑

k akh(t − kT ). What is the bandwidth? More
generally, what is its Fourier transform?
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Carrier Transmission
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Carrier Transmission

The baseband signal is y(t) =
∑

k akh(t − kT ). The power spectral density of the
transmission is ∝ |H(f )|2
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|H(f)|2

The carrier modulated signal is ym(t) = y(t) cos(2πtfc)
But bandwidth gets twice as large!
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Carrier Transmission
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Carrier Transmission

Important

Where did the energy go?

Basic Fourier relations:

cos(2πfct)h(t) ←→
1

2
H(f − fc) +

1

2
H(f + fc)

sin(2πfct)h(t) ←→
i

2
H(f − fc)−

i

2
H(f + fc)

The 1/2 factor corresponds to a 1/4 of the energy. Since there are two terms, 1/2 of
the energy is preserved.

What about the increased bandwidth?
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Carrier Transmission

Assume two independent baseband transmissions
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Carrier Transmission

Assume two independent baseband transmissions
After modulation with cos(2πtfc) and sin(2πtfc) we get

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

f, [kHz]

Modulated by sin(2π tf
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Modulated by cos(2π tf
c
)
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Carrier Transmission

Assume two independent baseband transmissions
After demodulation with cos(2πtfc) we get

−15 −10 −5 0 5 10 15
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

f, [kHz]

There is a red one here

Cut away these with low pass filter

The red spectras cancel out, thus, we can detect the blue independently from the red
Similar for demodulation with sin(2πtfc)
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Carrier Transmission

The block diagram of the transmitter is

y(t)

yQ(t)

yI(t)

cos(2 tfc)

-sin(2 tfc)

y(t) = yI(t) cos(2πfct)− yQ(t) sin(2πfct)
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Carrier Transmission

The block diagram of the receiver is

cos(2 tfc)

-sin(2 tfc)

r(t)

LPF

LPF

yI(t)+nI(t)

yQ(t)+nQ(t)

The in-phase and the quadrature components can be independently detected!
The LPF (low pass filters) can be taken as a matched filter to h(t)
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Carrier Transmission

The signals at both rails are baseband signals, and conventional processing follows:
matched filter → sampling every Ts second → decision unit

MF

Sample: kTs

yI(t)+nI(t)

MF

Sample: kTs

yQ(t)+nQ(t)

rI[k]=aI[k]+nI[k]

rQ[k]=aQ[k]+nQ[k]
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Carrier Transmission

What is a complex-valued symbol 1 + i?

In QPSK, we transmit complex valued symbols. In one symbol interval, we have

y(t) = h(t)︸︷︷︸
yI(t)

cos(2πfct)− h(t)︸︷︷︸
yQ(t)

sin(2πfct)
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Carrier Transmission

Real part goes here and imaginary here

What is a complex-valued symbol 1 + i?

In QPSK, we transmit complex valued symbols. In one symbol interval, we have

y(t) = h(t)︸︷︷︸
yI(t)

cos(2πfct)− h(t)︸︷︷︸
yQ(t)

sin(2πfct)
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Carrier Transmission

We can alternatively express the signal y(t) as

y(t) = yI(t) cos(2πfct)− yQ(t) sin(2πfct)

= e(t) cos(2πfct + θ(t))

where e(t) is the envelope and θ(t) is the phase

For QPSK, e(t) =
√
2h(t) and θ(t) ∈ {π/4, 3π/4, 5π/4, 7π/4}

We can further manipulate y(t) into

y(t) = Re{(yI(t) + iyQ(t))e
2πfct}

= Re{ỹ(t)ei2πfct}

where
ỹ(t) = yI(t) + iyQ(t)
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Carrier Transmission

Example

Assume that we have two bits to transmit, say +1 and -1.

We can either do this as

y(t) = h(t) cos(2πfct)− (−h(t)) sin(2πfct)

or as
y(t) =

√
2h(t) cos(2πfct + 7π/4)

or as
y(t) = Re{(1− i)h(t)e2πfct}
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Carrier Transmission

In the last representation, we can change the receiver processing into

MF

Sample: kTs

yI(t)+nI(t)

MF

Sample: kTs

yQ(t)+nQ(t)

rI[k]=aI[k]+nI[k]

rQ[k]=aQ[k]+nQ[k]

i

r[k]+n[k]
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