Matched filtering

Transmitted complex baseband signal equals

$$y^{c}(t) = \sum_{k} a_{k} p(t - kT_{s})$$

Where {a} are complex data symbols and p(t) any pulse shape.

Received complex baseband signal equals

$$r^{c}(t) = \sum_{k} a_{k}v(t - kT_{s}) + n^{c}(t)$$
 where $v(t) = p(t) \star h^{c}(t)$

What is the optimal receiver processing? We know that it is "matched filtering", but to what whould we match the filter?

Matched filtering

optimal but not possible

suboptimal but possible

New problems emerge.....we don't know where to sample, this we model through the offset $\boldsymbol{\epsilon}$

ISI

Let z(t) denote the matched filter. The signal part of each sample r_k equals

$$\begin{aligned} r_k &= \int_{-\infty}^{\infty} r^c(\tau) z(t-\tau) d\tau \bigg|_{t=kT+\epsilon} \\ &= \int_{-\infty}^{\infty} r^c(\tau) p(\tau-t) d\tau \bigg|_{t=kT+\epsilon} \\ &= \int_{-\infty}^{\infty} \left(\sum_{\ell} a_{\ell} v(\tau-\ell T) \right) p(\tau-kT-\epsilon) d\tau \\ &= \sum_{\ell} a_{\ell} \int_{-\infty}^{\infty} v(\tau-\ell T) p(\tau-kT-\epsilon) d\tau \\ &= \sum_{\ell} a_{\ell} \int_{-\infty}^{\infty} v(\tau) p(\tau+(\ell-k)T-\epsilon) d\tau \\ &= \sum_{\ell} a_{\ell} h_{k-\ell}, \end{aligned}$$

where

$$h_n \triangleq \int_{-\infty}^{\infty} v(\tau) p(\tau - nT - \epsilon) \mathrm{d}\tau.$$

ISI, Example 1

Example 1. Assume that $\epsilon = 0$, and that $h(t) = \delta(t)$, (i.e. no channel and no sampling mismatch). This implies that $h_I(t) = \delta(t)$ and $h_Q(t) = 0$ (can be realized from $\tilde{r}_I(t) = y_I(t)/2$ and $\tilde{r}_I Q = y_Q(t)/2$.) Hence, the complex channel equals,

$$h^{c}(t) = \delta(t)\cos(\phi) - \jmath\delta(t)\sin(\phi)$$

and v(t) becomes

$$v(t) = p(t)\cos(\phi) - \jmath p(t)\sin(\phi).$$

Since $\epsilon = 0$ we get that $h_n = 0$ if $n \neq 0$. For n = 0 we get,

$$h_0 = \int p(t)^2 dt \exp(-j\phi) = E_p \exp(-j\phi),$$

and we get that

$$r_k = E_p a_k \exp(-\jmath \phi) + \eta_k,$$

where η_k is a noise variable.

ISI, Example 2

Example 2. Assume that both ϕ and ϵ are non-zero, and that $h^c(t) \neq 0, 0 \leq t \leq T$.

It follows that v(t) is of length 2T and may have a complicated shape that is not known to us. How many non-zero ISI taps do we get?

Start by the case $\epsilon = 0$, then

$$h_{-1} = \int_{0}^{2T} v(t)p(t+T)dt = 0$$

$$h_{0} = \int_{0}^{2T} v(t)p(t)dt \neq 0$$

$$h_{1} = \int_{0}^{2T} v(t)p(t-T)dt \neq 0$$

$$h_{2} = \int_{0}^{2T} v(t)p(t-2T)dt = 0.$$

Thus, for $\epsilon = 0$ there are two taps.

ISI, Example 2

Let us now move on to $\epsilon < 0$

$$h_{-1} = \int_{0}^{2T} v(t)p(t+T-\epsilon)dt = 0$$

$$h_{0} = \int_{0}^{2T} v(t)p(t-\epsilon)dt \neq 0$$

$$h_{1} = \int_{0}^{2T} v(t)p(t-T-\epsilon)dt \neq 0$$

$$h_{2} = \int_{0}^{2T} v(t)p(t-2T-\epsilon)dt \neq 0$$

$$h_{3} = \int_{0}^{2T} v(t)p(t-3T-\epsilon)dt = 0.$$

Now take $\epsilon > 0$

$$h_{-2} = \int_{0}^{2T} v(t)p(t + 2T - \epsilon)dt = 0$$

$$h_{-1} = \int_{0}^{2T} v(t)p(t + T - \epsilon)dt \neq 0$$

$$h_{0} = \int_{0}^{2T} v(t)p(t - \epsilon)dt \neq 0$$

$$h_{1} = \int_{0}^{2T} v(t)p(t - T - \epsilon)dt \neq 0$$

$$h_{2} = \int_{0}^{2T} v(t)p(t - 2T - \epsilon)dt = 0.$$

Thus, for $\epsilon \neq 0$ there are three taps.

Major problem: We dont know where the signal starts!

Major problem: We dont know where the signal starts!

If there is no noise, its easy....

Major problem: We dont know where the signal starts!

How about this one?

Major problem: We dont know where the signal starts!

How about this one? The signal starts at $t/T_s = 6.5$ and ends at $t/T_s = 16.5$. $E_b/N_0 = 10$ dB.

- In general, syncronization is a difficult subject
- Requires solid background in statistical signal processing and control theory
- Phase-locked-loops (PLL) are essential
- We will only make use of simple techniques....

Major problem: We dont know where the signal starts!

Not knowing ϕ will lead to a leakage between the in-phase and the quadrature components, but this can be neglected.

Not knowing ϵ is more severe and will be analyzed next.

Task 2: Only mild channel is present, simple synchronization is enough. Will be analyzed as if the channel was not present at all

Task 3: More severe channel is present, and more advanced synchronization is needed. Will be treated after easter since there is a clear relation to OFDM

In-phase signal at the input to the MF

In-phase signal at the input to the MF

Graphical interpretation:

- 1. Let p(t) slide along the x-axis
- 2. At each position, multiply p(t) and r(t)
- 3. Integrate the product

In-phase signal at the input to the MF

Recall Cauchy-Schwarz: $\left|\int f(x)g(x)dx\right| \leq \sqrt{\int (f(x))^2 dx} \sqrt{\int (g(x))^2 dx}$

Recall Cauchy-Schwarz:
$$|\int f(x)g(x)dx| \leq \sqrt{\int (f(x))^2 dx} \sqrt{\int (g(x))^2 dx}$$

Fredrik Rusek: "PWC 1, Lecture 3" March 2012

The phase mismatch and non-optimal sampling instance yields a channel model

 $r[k] = \alpha e^{i\phi} a[k] + n[k]$

Phase mismatch gives ϕ and sampling mismatch gives α

 ϕ can be estimated from a pilot symbol p. Let

$$a[1] = p = 1 + i = \sqrt{2}e^{i\pi/4}$$

then

$$\hat{\phi} = \text{angle}\{r[1]\} - \frac{\pi}{4}$$

Estimation of ϵ is solved by selecting the sampling instance such that α is maximized. Recall the receiver structure

$$e_m(t) = \sqrt{m_I^2(t) + m_Q^2(t)}$$

 \boldsymbol{c} is a threshold, easiest to find by trial and error

The transmission starts and ends with pilots 2+2i

Construct $m_I(t)$ and $m_Q(t)$ as

$$m_I(t) = r(t)\cos(2\pi f_c t) \star p(t)$$

 $\quad \text{and} \quad$

$$m_Q(t) = -r(t)\sin(2\pi f_c t) \star p(t)$$

Then generate

$$e_m(t) = \sqrt{m_I^2(t) + m_Q^2(t)}$$

Plot

Fredrik Rusek: "PWC 1, Lecture 3"

Fredrik Rusek: "PWC 1, Lecture 3" March 2012

Optimal sampling point is at $T_{\text{Sample}} = 1.144$ seconds.

Fredrik Rusek: "PWC 1, Lecture 3" March 2012

Sample at $T_{\text{Sample}} + kT_s$:

$$r[k] = m_I(T_{\text{Sample}} + kT_s) + im_Q(T_{\text{Sample}} + kT_s)$$

We get

 $r[k] = 4.38 - 5.60i \ \ 3.16 + 1.97i \ \ 2.79 + 2.16i \ \ 3.55 + 2.66i \ \ -2.73 - 2.25i....$ Consequently

$$\alpha \exp(i\phi) = r[0]/(2+2i) = -0.30 - 2.49i$$

$$r[1]/\alpha \exp(i\phi) = -0.93 + 1.15i \text{ and } r[2]/\alpha = -0.9899 + 0.9982i$$

So
$$\hat{a}[1] = -1 + i \text{ and } \hat{a}[2] = -1 + i$$

