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Matched filtering 

Transmitted complex baseband signal equals 
 
 
 
Where {a} are complex data symbols and p(t) any pulse shape. 
 
Received complex baseband signal equals 
 
 
 
 
What is the optimal receiver processing? 
We know that it is ”matched filtering”, but to what whould we match the 
filter? 
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Matched filtering 

New problems emerge…..we don’t know where 
to sample, this we model through the offset ε 
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ISI 

where nc(t) is complex noise and

v(t) = p(t) ∗ hc(t)

. The optimal receiver should apply a filter matched to the (complex valued) pulse v(t), which is

however unknown to the reciever. A more practical approach, although suboptimal, is to apply a

filter matched to p(t), see Figure 2.
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v(τ)p(τ − nT − ε)dτ. (9)

Equation (8) is generally referred to as an intersymbol interference (ISI) channel model.

The effect of the two mismatch parameters φ and ε is the following: φ has virtually no effect at

all, this can be realized since the energy of the channel impulse response hc(t) is not dependent on

φ. The effect of ε is more complicated. In general with ε #= 0, the energy in the impulse response

h0, h1, h2, ... is less than with ε = 0. This results in degraded performance.

Example 1. Assume that ε = 0, and that h(t) = δ(t), (i.e. no channel and no sampling mismatch).

This implies that hI(t) = δ(t) and hQ(t) = 0 (can be realized from r̃I(t) = yI(t)/2 and r̃IQ =

yQ(t)/2.) Hence, the complex channel equals,

hc(t) = δ(t) cos(φ) − δ(t) sin(φ)

and v(t) becomes

v(t) = p(t) cos(φ) − p(t) sin(φ).
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ISI, Example 1 
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and v(t) becomes

v(t) = p(t) cos(φ) − p(t) sin(φ).
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Since ε = 0 we get that hn = 0 if n != 0. For n = 0 we get,

h0 =

∫

p(t)2dt exp(−φ) = Ep exp(−φ),

and we get that

rk = Epak exp(−φ) + ηk,

where ηk is a noise variable.

Example 2. Assume that both φ and ε are non-zero, and that hc(t) != 0, 0 ≤ t ≤ T .

It follows that v(t) is of length 2T and may have a complicated shape that is not known to us.

How many non-zero ISI taps do we get?

Start by the case ε = 0, then

h−1 =
∫ 2T
0

v(t)p(t + T )dt = 0

h0 =
∫ 2T
0

v(t)p(t)dt != 0

h1 =
∫ 2T
0

v(t)p(t − T )dt != 0

h2 =
∫ 2T
0

v(t)p(t − 2T )dt = 0.

Thus, for ε = 0 there are two taps.

Let us now move on to the case of a delayed sampling time, i.e. ε > 0. We get

h−1 =
∫ 2T
0

v(t)p(t + T + ε)dt = 0

h0 =
∫ 2T
0

v(t)p(t + ε)dt != 0

h1 =
∫ 2T
0

v(t)p(t − T + ε)dt != 0

h2 =
∫ 2T
0

v(t)p(t − 2T + ε)dt != 0

h3 =
∫ 2T
0

v(t)p(t − 3T + ε)dt = 0.

Now take ε < 0. We get

h−2 =
∫ 2T
0

v(t)p(t + 2T + ε)dt = 0

h−1 =
∫ 2T
0

v(t)p(t + T + ε)dt != 0

h0 =
∫ 2T
0

v(t)p(t + ε)dt != 0

h1 =
∫ 2T
0

v(t)p(t − T + ε)dt != 0

h2 =
∫ 2T
0

v(t)p(t − 2T + ε)dt = 0.

Thus, for ε != 0 there are three taps.

4
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ISI, Example 2 
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Synchronization

Major problem: We dont know where the signal starts!

If there is no noise, its easy....

Fredrik Rusek: “PWC 1, Lecture 3” March 2012
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Synchronization

• In general, syncronization is a difficult subject

• Requires solid background in statistical signal processing and control theory

• Phase-locked-loops (PLL) are essential

• We will only make use of simple techniques....

Fredrik Rusek: “PWC 1, Lecture 3” March 2012



Synchronization

Major problem: We dont know where the signal starts!

Not knowing φ will lead to a leakage between the in-phase and the quadrature compo-
nents, but this can be neglected.

Not knowing ǫ is more severe and will be analyzed next.

Fredrik Rusek: “PWC 1, Lecture 3” March 2012



Synchronization

Task 2: Only mild channel is present, simple synchronization is enough. Will be
analyzed as if the channel was not present at all

Task 3: More severe channel is present, and more advanced synchronization is needed.
Will be treated after easter since there is a clear relation to OFDM

Fredrik Rusek: “PWC 1, Lecture 3” March 2012



Synchronization in PWC 1 

In-phase signal at the 
input to the MF 

MF 

Operation of the MF:  𝑝 𝜏 𝑟 𝑡 − 𝜏 𝑑𝜏 

𝑟(𝑡) 

p(𝑡) 



Synchronization in PWC 1 

In-phase signal at the 
input to the MF 

MF 

Operation of the MF:  𝑝 𝜏 𝑟 𝑡 − 𝜏 𝑑𝜏 

𝑟(𝑡) 

p(𝑡) 

Graphical interpretation: 
1. Let p(t) slide along the x-axis 
2. At each position, multiply p(t) and r(t) 
3. Integrate the product 



Synchronization in PWC 1 

In-phase signal at the 
input to the MF 

MF 

𝑟(𝑡) 

p(𝑡) 

Recall Cauchy-Schwarz: |  𝑓 𝑥 𝑔 𝑥 𝑑𝑥| ≤   𝑓(𝑥) 2𝑑𝑥   𝑔(𝑥) 2𝑑𝑥 
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Only noise here 



Synchronization in PWC 1 
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Some overlap here 



Synchronization in PWC 1 

𝑟(𝑡) 

p(𝑡) 

Recall Cauchy-Schwarz: |  𝑓 𝑥 𝑔 𝑥 𝑑𝑥| ≤   𝑓(𝑥) 2𝑑𝑥   𝑔(𝑥) 2𝑑𝑥 

 
 

Fully overlaped. Max 
value due to C-S-
inequality 



Synchronization in PWC 1 

𝑟(𝑡) 

p(𝑡) 

Recall Cauchy-Schwarz: |  𝑓 𝑥 𝑔 𝑥 𝑑𝑥| ≤   𝑓(𝑥) 2𝑑𝑥   𝑔(𝑥) 2𝑑𝑥 

 
 

Less overlap again 



Synchronization in PWC 1 

𝑟(𝑡) 

p(𝑡) 

MF output 
 
(Without noise) 

Correct 
sampling point! 



Synchronization

The phase mismatch and non-optimal sampling instance yields a channel model

r[k] = αeiφa[k] + n[k]

Phase mismatch gives φ and sampling mismatch gives α

φ can be estimated from a pilot symbol p. Let

a[1] = p = 1 + i =
√

2eiπ/4

then
φ̂ = angle{r[1]} − π

4

Fredrik Rusek: “PWC 1, Lecture 3” March 2012



Synchronization

MF

Sample: kTs

yI(t)+nI(t)

MF

Sample: kTs

yQ(t)+nQ(t)

rI[k]=aI[k]+nI[k]

rQ[k]=aQ[k]+nQ[k]

i

r[k]+n[k]

mI(t)

mQ(t)

Estimation of ǫ is solved by selecting the sampling instance such that α is maximized.
Recall the receiver structure

Fredrik Rusek: “PWC 1, Lecture 3” March 2012



Synchronization

em(t) =
√

m2
I(t) + m2

Q(t)

c is a threshold, easiest to find by trial and error

Fredrik Rusek: “PWC 1, Lecture 3” March 2012



Example

Example

The transmission starts and ends with pilots 2 + 2i

Fredrik Rusek: “PWC 1, Lecture 3” March 2012



Example
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Example

Construct mI(t) and mQ(t) as

mI(t) = r(t) cos(2πfct) ⋆ p(t)

and
mQ(t) = −r(t) sin(2πfct) ⋆ p(t)

Then generate

em(t) =
√

m2
I(t) + m2

Q(t)

Plot

Fredrik Rusek: “PWC 1, Lecture 3” March 2012



Example
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Example
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Example
Optimal sampling point is at TSample = 1.144 seconds.
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Example
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Example
Sample at TSample + kTs:

r[k] = mI(TSample + kTs) + imQ(TSample + kTs)

We get

r[k] = 4.38 − 5.60i 3.16 + 1.97i 2.79 + 2.16i 3.55 + 2.66i − 2.73 − 2.25i....

Consequently
α exp(iφ) = r[0]/(2 + 2i) = −0.30 − 2.49i

r[1]/α exp(iφ) = −0.93 + 1.15i and r[2]/α = −0.9899 + 0.9982i

So
â[1] = −1 + i and â[2] = −1 + i

Fredrik Rusek: “PWC 1, Lecture 3” March 2012


