Carrier Transmission

The transmitted signal is $y(t)=\sum_{k} a_{k} h(t-k T)$. What is the bandwidth? More generally, what is its Fourier transform?

Carrier Transmission

Table 2.3 Properties of the Fourier transform

1. Linearity
2. Inverse
3. Translation (time shift)
4. Modulation (frequency shift)
5. Time scaling
6. Differentiation in time
7. Differentiation in frequency
8. Integration in time
9. Duality
10. Conjugate functions
11. Convolution in time
12. Multiplication in time
13. Parseval's formulas

$$
\begin{aligned}
& a x_{1}(t)+b x_{2}(t) \leftrightarrow a X_{1}(f)+b X_{2}(f) \\
& x(t)=\int_{-\infty}^{\infty} X(f) e^{j u t} d f \\
& x\left(t-t_{0}\right) \leftrightarrow X(f) e^{-j \omega t_{0}} \\
& x(t) e^{j \omega 0} \leftrightarrow X\left(f-f_{0}\right) \\
& x(t) \cos \omega_{0} t \leftrightarrow \frac{1}{2} X\left(f+f_{0}\right)+\frac{1}{2} X\left(f-f_{0}\right) \\
& x(a t) \leftrightarrow \frac{1}{|a|} X(f / a) \\
& \frac{d}{d t} x(f) \leftrightarrow j \omega X(f) \\
& t(t) \leftrightarrow-\frac{1}{j 2 \pi} \frac{d}{d f} X(f) \\
& \int_{-\infty}^{*} x(\tau) d \tau \leftrightarrow \frac{1}{j \omega} X(f) \\
& X(t) \leftrightarrow x(-f) \\
& x^{*}(t) \leftrightarrow X^{*}(-f) \\
& x_{1}(t) * x_{2}(t) \leftrightarrow X_{1}(f) X_{2}(f) \\
& x_{1}(t) x_{2}(t) \leftrightarrow X_{1}(f) * X_{2}(f) \\
& \int_{-\infty}^{\infty} x_{1}(t) x_{2}^{*}(t) d t=\int_{-\infty}^{\infty} X_{1}(f) X_{2}^{*}(f) d f \\
& o_{0}, w h e n x_{1}(t)=x_{2}(t), \\
& \int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty}|X(f)|^{2} d f \\
& \hline
\end{aligned}
$$

Carrier Transmission

The baseband signal is $y(t)=\sum_{k} a_{k} h(t-k T)$. The power spectral density of the transmission is $\propto|H(f)|^{2}$

Carrier Transmission

The baseband signal is $y(t)=\sum_{k} a_{k} h(t-k T)$. The power spectral density of the transmission is $\propto|H(f)|^{2}$

The carrier modulated signal is $y_{m}(t)=y(t) \cos \left(2 \pi t f_{c}\right)$

Carrier Transmission

The baseband signal is $y(t)=\sum_{k} a_{k} h(t-k T)$. The power spectral density of the transmission is $\propto|H(f)|^{2}$

The carrier modulated signal is $y_{m}(t)=y(t) \cos \left(2 \pi t f_{c}\right)$
But bandwidth gets twice as large!

Carrier Transmission

Where did the energy go?

Basic Fourier relations:

$$
\begin{aligned}
& \cos \left(2 \pi f_{c} t\right) h(t) \longleftrightarrow \frac{1}{2} H\left(f-f_{c}\right)+\frac{1}{2} H\left(f+f_{c}\right) \\
& \sin \left(2 \pi f_{c} t\right) h(t) \longleftrightarrow \frac{i}{2} H\left(f-f_{c}\right)-\frac{i}{2} H\left(f+f_{c}\right)
\end{aligned}
$$

Carrier Transmission

Where did the energy go?

Basic Fourier relations:

$$
\begin{aligned}
& \cos \left(2 \pi f_{c} t\right) h(t) \longleftrightarrow \frac{1}{2} H\left(f-f_{c}\right)+\frac{1}{2} H\left(f+f_{c}\right) \\
& \sin \left(2 \pi f_{c} t\right) h(t) \longleftrightarrow \frac{i}{2} H\left(f-f_{c}\right)-\frac{i}{2} H\left(f+f_{c}\right)
\end{aligned}
$$

The $1 / 2$ factor corresponds to a $1 / 4$ of the energy. Since there are two terms, $1 / 2$ of the energy is preserved.

Carrier Transmission

Where did the energy go?

Basic Fourier relations:

$$
\begin{aligned}
& \cos \left(2 \pi f_{c} t\right) h(t) \longleftrightarrow \frac{1}{2} H\left(f-f_{c}\right)+\frac{1}{2} H\left(f+f_{c}\right) \\
& \sin \left(2 \pi f_{c} t\right) h(t) \longleftrightarrow \frac{i}{2} H\left(\underset{\text { Important }}{\left.f-f_{c}\right)-\frac{i}{2}} H\left(f+f_{c}\right)\right.
\end{aligned}
$$

The $1 / 2$ factor corresponds to a $1 / 4$ of the energy. Since there are two terms, $1 / 2$ of the energy is preserved.

What about the increased bandwidth?

Carrier Transmission

Assume two independent baseband transmissions

Carrier Transmission

Assume two independent baseband transmissions
After modulation with $\cos \left(2 \pi t f_{c}\right)$ and $\sin \left(2 \pi t f_{c}\right)$ we get

Carrier Transmission

Assume two independent baseband transmissions After demodulation with $\cos \left(2 \pi t f_{c}\right)$ we get

The red spectras cancel out, thus, we can detect the blue independently from the red Similar for demodulation with $\sin \left(2 \pi t f_{c}\right)$

Carrier Transmission

The block diagram of the transmitter is

$$
y(t)=y_{I}(t) \cos \left(2 \pi f_{c} t\right)-y_{Q}(t) \sin \left(2 \pi f_{c} t\right)
$$

Carrier Transmission

The block diagram of the receiver is

The in-phase and the quadrature components can be independently detected! The LPF (low pass filters) can be taken as a matched filter to $h(t)$

Carrier Transmission

The signals at both rails are baseband signals, and conventional processing follows: matched filter \rightarrow sampling every T_{s} second \rightarrow decision unit

Sample: kTs

Carrier Transmission

What is a complex-valued symbol $1+i$?

In QPSK, we transmit complex valued symbols. In one symbol interval, we have

$$
y(t)=\underbrace{h(t)}_{y_{I}(t)} \cos \left(2 \pi f_{c} t\right)-\underbrace{h(t)}_{y_{Q}(t)} \sin \left(2 \pi f_{c} t\right)
$$

Carrier Transmission

What is a complex-valued symbol $1+i$?

In QPSK, we transmit complex valued symbols. In one symbol interval, we have

$$
y(t)=\underbrace{h(t)}_{y_{I}(t)} \cos \left(2 \pi f_{c} t\right)-\underbrace{h(t)}_{y_{Q}(t)} \sin \left(2 \pi f_{c} t\right)
$$

Real part goes here and imaginary here

Carrier Transmission

We can alternatively express the signal $y(t)$ as

$$
\begin{aligned}
y(t) & =y_{I}(t) \cos \left(2 \pi f_{c} t\right)-y_{Q}(t) \sin \left(2 \pi f_{c} t\right) \\
& =e(t) \cos \left(2 \pi f_{c} t+\theta(t)\right)
\end{aligned}
$$

where $e(t)$ is the envelope and $\theta(t)$ is the phase

For QPSK, $e(t)=\sqrt{2} h(t)$ and $\theta(t) \in\{\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4\}$
We can further manipulate $y(t)$ into

$$
\begin{aligned}
y(t) & =\operatorname{Re}\left\{\left(y_{I}(t)+i y_{Q}(t)\right) \mathrm{e}^{2 \pi f_{c} t}\right\} \\
& =\operatorname{Re}\left\{\tilde{y}(t) \mathrm{e}^{i 2 \pi f_{c} t}\right\}
\end{aligned}
$$

where

$$
\tilde{y}(t)=y_{I}(t)+i y_{Q}(t)
$$

Carrier Transmission

Example

Assume that we have two bits to transmit, say +1 and -1 .

Carrier Transmission

Example

Assume that we have two bits to transmit, say +1 and -1 .

We can either do this as

$$
y(t)=h(t) \cos \left(2 \pi f_{c} t\right)-(-h(t)) \sin \left(2 \pi f_{c} t\right)
$$

Carrier Transmission

Example

Assume that we have two bits to transmit, say +1 and -1 .

We can either do this as

$$
y(t)=h(t) \cos \left(2 \pi f_{c} t\right)-(-h(t)) \sin \left(2 \pi f_{c} t\right)
$$

or as

$$
y(t)=\sqrt{2} h(t) \cos \left(2 \pi f_{c} t+7 \pi / 4\right)
$$

Carrier Transmission

Example

Assume that we have two bits to transmit, say +1 and -1 .

We can either do this as

$$
y(t)=h(t) \cos \left(2 \pi f_{c} t\right)-(-h(t)) \sin \left(2 \pi f_{c} t\right)
$$

or as

$$
y(t)=\sqrt{2} h(t) \cos \left(2 \pi f_{c} t+7 \pi / 4\right)
$$

or as

$$
y(t)=\operatorname{Re}\left\{(1-i) h(t) \mathrm{e}^{2 \pi f_{c} t}\right\}
$$

Carrier Transmission

In the last representation, we can change the receiver processing into

Sample: $k T_{s}$

Svstem model

- We want to represent the outputs as functions of the inputs
- Note that the receiver and transmitter are not synchronous

Models of input and channel

The transmitted signal $y(t)$ equals

$$
y(t)=y_{I}(t) \cos \left(\omega_{c} t\right)-y_{Q}(t) \sin \left(\omega_{c} t\right)
$$

Similarily, the channel impulse response can be expressed as

$$
h(t)=h_{I}(t) \cos \left(\omega_{c} t\right)-h_{Q}(t) \sin \left(\omega_{c} t\right) .
$$

Channel output in the Fourier domain

To evaluate $r(t)=y(t) * h(t)$, we consider the signals in the Fourier domain:

$$
\begin{aligned}
R(f)= & Y(f) H(f) \\
= & \frac{1}{4}\left[Y_{I}\left(f+f_{c}\right)+Y_{I}\left(f-f_{c}\right)+\jmath Y_{Q}\left(f+f_{c}\right)-\jmath Y_{Q}\left(f-f_{c}\right)\right] \\
& \times\left[H_{I}\left(f+f_{c}\right)+H_{I}\left(f-f_{c}\right)+\jmath H_{Q}\left(f+f_{c}\right)-\jmath H_{Q}\left(f-f_{c}\right)\right]
\end{aligned}
$$

Now observe that a product of the type $Y_{I / Q}\left(f \pm f_{c}\right) H_{I / Q}\left(f \mp f_{c}\right)=0$

Channel output in the Fourier domain

$$
\begin{aligned}
R(f)= & \frac{1}{4}\left[Y_{I}\left(f+f_{c}\right) H_{I}\left(f+f_{c}\right)+\jmath Y_{I}\left(f+f_{c}\right) H_{Q}\left(f+f_{c}\right)+Y_{I}\left(f-f_{c}\right) H_{I}\left(f-f_{c}\right)\right. \\
& -\jmath Y_{I}\left(f-f_{c}\right) H_{Q}\left(f-f_{c}\right)+\jmath Y_{Q}\left(f+f_{c}\right) H_{I}\left(f+f_{c}\right)-Y_{Q}\left(f+f_{c}\right) H_{Q}\left(f+f_{c}\right) \\
& \left.-\jmath Y_{Q}\left(f-f_{c}\right) H_{I}\left(f+f_{c}\right)-Y_{Q}\left(f-f_{c}\right) H_{Q}\left(f-f_{c}\right)\right]
\end{aligned}
$$

Channel output in the Fourier domain

$$
\begin{aligned}
& R(f)=\frac{1}{4}\left[Y_{I}\left(f+f_{c}\right) H_{I}\left(f+f_{c}\right)_{\mathbf{\prime}}+\jmath Y_{I}\left(f+f_{c}\right) H_{Q}\left(f+f_{c}\right)+Y_{I}\left(f-f_{c}\right) H_{I}\left(f-f_{c}\right)\right. \\
& -\jmath Y_{I}\left(f-f_{c}\right) H_{Q}\left(f-f_{c}\right)+\jmath Y_{Q}\left(f+f_{c}\right) H_{I}\left(f+f_{c}\right)-Y_{Q}\left(f \not f f_{c}\right) H_{Q}\left(f+f_{c}\right) \\
& \left.-\jmath Y_{Q}\left(f-f_{c}\right) H_{I}\left(f+f_{c}\right)-Y_{Q}\left(f-f_{c}\right) H_{Q}\left(f-f_{c}\right)\right] \\
& \text { By identifying terms, we get that } \\
& \text { with } r(t)=\tilde{r}_{I}(t) \cos \left(\omega_{c} t\right)-\tilde{r}_{Q}(t) \sin \left(v_{c} t\right), \\
& \qquad \tilde{r}_{I}(t)=\frac{1}{2}\left[y_{I}(t) * h_{I}(t)-y_{Q}(t) * h_{Q}(t)\right]
\end{aligned}
$$

and

$$
\tilde{r}_{Q}(t)=\frac{1}{2}\left[y_{I}(t) * h_{Q}(t)+y_{Q}(t) * h_{I}(t)\right] .
$$

Channel output in the Fourier domain

$$
\begin{aligned}
& R(f)=\frac{1}{4}\left[Y_{I}\left(f+f_{c}\right) H_{I}\left(f+f_{c}\right)+\jmath Y_{I}\left(f+f_{c}\right) H_{Q}\left(f+f_{c}\right)+Y_{I}\left(f-f_{c}\right) H_{I}\left(f-f_{c}\right)\right. \\
& -\jmath Y_{I}\left(f-f_{c}\right) H_{Q}\left(f-f_{c}\right)+\jmath Y_{Q}\left(f+f_{c}\right) H_{I}\left(f+f_{c}\right)-Y_{Q}\left(f+f_{c}\right) H_{Q}\left(f+f_{c}\right) \\
& \left.-\jmath Y_{Q}\left(f-f_{c}\right) H_{I}\left(f+f_{c}\right)-Y_{Q}\left(f-f_{c}\right) H_{Q}\left(f-f_{c}\right)\right] \\
& \text { By identifying terms, we get that } \\
& \qquad r(t)=\tilde{r}_{I}(t) \cos \left(\omega_{c} t\right)-\tilde{r}_{Q}(t) \sin \left(\omega_{c} t\right) \\
& \text { with } \\
& \qquad \tilde{r}_{I}(t)=\frac{1}{2}\left[y_{I}(t) * h_{I}(t)-y_{Q}(t) * h_{Q}(t)\right]
\end{aligned}
$$

and

$$
\tilde{r}_{Q}(t)=\frac{1}{2}\left[y_{I}(t) * h_{Q}(t)+y_{Q}(t) * h_{I}(t)\right]
$$

Channel output in the Fourier domain

$$
\begin{aligned}
R(f)= & \frac{1}{4}\left[Y_{I}\left(f+f_{c}\right) H_{I}\left(f+f_{c}\right)_{\mathbf{\jmath}}+\jmath Y_{I}\left(f+f_{c}\right) H_{Q}\left(f+f_{c}\right)+Y_{I}\left(f-f_{c}\right) H_{I}\left(f-f_{c}\right)_{\mathbf{\prime}}\right. \\
& -\jmath Y_{I}\left(f-f_{c}\right) H_{Q}\left(f-f_{c}\right)+\jmath Y_{Q}\left(f+f_{q}\right) H_{I}\left(f+f_{c}\right)-Y_{Q}\left(f+f_{c}\right) H_{Q}\left(f+f_{c}\right)
\end{aligned}
$$

By identifying terms, we get that
with

$$
r(t)=\tilde{r}_{I}(t) \cos \left(\omega_{c} t\right)-\tilde{r}_{Q}(t) \sin \left(\omega_{c} t\right)
$$

and

$$
\begin{aligned}
& \tilde{r}_{I}(t)=\frac{1}{2}\left[y_{I}(t) * h_{I}(t)-y_{Q}(t) * h_{Q}(t)\right] \\
& \tilde{r}_{Q}(t)=\frac{1}{2}\left[y_{I}(t) * h_{Q}(t)+y_{Q}(t) * h_{I}(t)\right]
\end{aligned}
$$

Channel output in the Fourier domain

$$
\begin{aligned}
& R(f)=\frac{1}{4}[Y_{I}\left(f+f_{c}\right) H_{I}\left(f+f_{c}\right)+\jmath Y_{I}\left(f+f_{c}\right) H_{Q}\left(f+f_{c}\right)+\underbrace{Y_{I}\left(f-f_{c}\right) H_{I}\left(f-f_{c}\right)_{1}} \\
& -\jmath Y_{I}\left(f-f_{c}\right) H_{Q}\left(f-f_{c}\right)+\jmath Y_{Q}\left(f+f_{c}\right) H_{I}\left(f+f_{c}\right)-Y_{Q}\left(f+f_{c}\right) H_{Q}\left(f+f_{c}\right) \\
& \text { By identifying terms, we get that } \\
& \quad r(t)=\tilde{r}_{I}(t) \cos \left(\omega_{c} t\right)-\tilde{r}_{Q}(t) \sin \left(\omega_{c} t\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{r}_{I}(t)=\frac{1}{2}\left[y_{I}(t) * h_{I}(t)-y_{Q}(t) * h_{Q}(t)\right] \\
& \tilde{r}_{Q}(t)=\frac{1}{2}\left[y_{I}(t) * h_{Q}(t)+y_{Q}(t) * h_{I}(t)\right] .
\end{aligned}
$$

Interlude

$-\sin \left(\omega_{c} t\right)$

$$
\tilde{r}_{Q}(t)=\frac{1}{2}\left[y_{I}(t) * h_{Q}(t)+y_{Q}(t) * h_{I}(t)\right] .
$$

Interlude

Now, lets multiply by $\cos (w t+\varphi) \ldots \ldots$

Basic trig properties

$$
\begin{aligned}
\cos (x) \cos (y) & =\frac{1}{2}[\cos (x+y)+\cos (x-y)] \\
\sin (x) \cos (y) & =\frac{1}{2}[\sin (x+y)+\sin (x-y)] \\
\sin (x) \sin (y) & =\frac{1}{2}[\cos (x+y)-\cos (x-y)]
\end{aligned}
$$

Signal at upper rail equals

$$
\begin{aligned}
& {\left[\tilde{r}_{I}(t) \cos \left(\omega_{c} t\right)-\tilde{r}_{Q}(t) \sin \left(\omega_{c} t\right)\right] \cos \left(\omega_{c} t+\phi\right)=} \\
& \quad \frac{1}{2}\left[\tilde{r}_{I}(t)\left[\cos \left(2 \omega_{c} t+\phi\right)+\cos (\phi)\right]-\tilde{r}_{Q}(t)\left[\sin \left(2 \omega_{c} t+\phi\right)-\sin (\phi)\right]\right]
\end{aligned}
$$

Basic trig properties

$$
\begin{aligned}
\cos (x) \cos (y) & =\frac{1}{2}[\cos (x+y)+\cos (x-y)] \\
\sin (x) \cos (y) & =\frac{1}{2}[\sin (x+y)+\sin (x-y)] \\
\sin (x) \sin (y) & =\frac{1}{2}[\cos (x+y)-\cos (x-y)]
\end{aligned}
$$

Signal at upper rail equals

$$
\begin{aligned}
& {\left[\tilde{r}_{I}(t) \cos \left(\omega_{c} t\right)-\tilde{r}_{Q}(t) \sin \left(\omega_{c} t\right)\right] \cos \left(\omega_{c} t+\phi\right)=} \\
& \quad \frac{1}{2}\left[\tilde{r}_{I}(t)\left[\cos \left(2 \omega_{c} t+\phi\right)+\cos (\phi)\right]-\tilde{r}_{Q}(t)\left[\sin \left(2 \omega_{c} t+\phi\right)-\sin (\phi)\right]\right]
\end{aligned}
$$

> Remove by low pass filtering

Channel output in the Fourier domain

we get that

$$
\begin{aligned}
r_{I}(t) & =\frac{1}{2}\left[\tilde{r}_{I}(t) \cos (\phi)+\tilde{r}_{Q}(t) \sin (\phi)\right] \\
& \left.=\frac{1}{4}\left[\left(y_{I}(t) * h_{I}(t)-y_{Q}(t) * h_{Q}(t)\right) \cos (\phi)+\left(y_{I}(t) * h_{Q}(t)+y_{Q}(t) * h_{I}(t)\right)\right) \sin (\phi)\right]
\end{aligned}
$$

and

$$
r_{Q}(t)=\frac{1}{4}\left[-\left(y_{I}(t) * h_{I}(t)-y_{Q}(t) * h_{Q}(t)\right) \sin (\phi)+\left(y_{I}(t) * h_{Q}(t)+y_{Q}(t) * h_{I}(t)\right) \cos (\phi)\right]
$$

Final result

Now construct the two complex valued signals

$$
y^{c}(t) \triangleq y_{I}(t)+\jmath y_{Q}(t)
$$

and

$$
r^{c}(t) \triangleq r_{I}(t)+\jmath r_{Q}(t)
$$

By identyifing some terms we can conclude that

$$
r^{c}(t)=y^{c}(t) * h^{c}(t),
$$

with

$$
h^{c}(t) \triangleq h_{I}(t) \cos (\phi)+h_{Q}(t) \sin (\phi)+\jmath\left(h_{Q}(t) \cos (\phi)-h_{I}(t) \sin (\phi)\right) .
$$

Final result

This can be modeled in the complex baseband by

Final result

$$
\begin{gathered}
h^{c}(t) \triangleq h_{I}(t) \cos (\phi)+h_{Q}(t) \sin (\phi)+\jmath\left(h_{Q}(t) \cos (\phi)-h_{I}(t) \sin (\phi)\right) . \\
y^{c}(t)=y_{I}(t)+\jmath y_{Q}(t) \longrightarrow \text { Channel } \overbrace{r^{c}(t)=r_{I}(t)+\jmath r_{Q}(t)}^{\longrightarrow} r^{c}(t)=y^{c}(t) \star h^{c}(t)
\end{gathered}
$$

This can be modeled in the complex baseband by.........this

No channel case

Let $h(t)=\delta(t)$
This means that $h_{I}(t)=\delta(t)$ and $h_{Q}(t)=0$
We get $h^{c}(t)=\delta(t) \cos (\phi)-\jmath \delta(t) \sin (\phi)$

Leakage between the Inphase and the qudrature components!

No channel case

Let $h(t)=\delta(t)$
This means that $h_{I}(t)=\delta(t)$ and $h_{Q}(t)=0$
We get $h^{c}(t)=\delta(t) \cos (\phi)-\jmath \delta(t) \sin (\phi)$
Leakage between the Inphase and the qudrature components!

$$
r^{c}(t)=\exp (-i \phi) y^{c}(t)
$$

In complex baseband, this shows up as a rotation!

Effect of $\boldsymbol{\phi}$

What is the effect of ϕ ?

$$
h^{c}(t) \triangleq h_{I}(t) \cos (\phi)+h_{Q}(t) \sin (\phi)+\jmath\left(h_{Q}(t) \cos (\phi)-h_{I}(t) \sin (\phi)\right)
$$

Energy of the impulse response $=\int_{-\infty}^{\infty}\left|h^{c}(t)\right|^{2} d t=\int_{-\infty}^{\infty} h_{I}^{2}(t)+h_{Q}^{2}(t) d t$

Energy is independent of ϕ !!

Doesn't matter if tx and rx are not synchronous

Summary

We can always work in the complex baseband domain with the input/ output relation

$$
r^{c}(t)=y^{c}(t) \star h^{c}(t)+n^{c}(t)
$$

And we do not care about $\boldsymbol{\phi}$ (it must be estimated though)

