
Carrier Transmission

The transmitted signal is y(t) =
∑

k akh(t − kT ). What is the bandwidth? More
generally, what is its Fourier transform?
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Carrier Transmission

The baseband signal is y(t) =
∑

k akh(t − kT ). The power spectral density of the
transmission is ∝ |H(f )|2
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The carrier modulated signal is ym(t) = y(t) cos(2πtfc)
But bandwidth gets twice as large!
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Carrier Transmission

Important

Where did the energy go?

Basic Fourier relations:

cos(2πfct)h(t) ←→
1

2
H(f − fc) +

1

2
H(f + fc)

sin(2πfct)h(t) ←→
i

2
H(f − fc)−

i

2
H(f + fc)

The 1/2 factor corresponds to a 1/4 of the energy. Since there are two terms, 1/2 of
the energy is preserved.

What about the increased bandwidth?
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Carrier Transmission

Assume two independent baseband transmissions
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Carrier Transmission

Assume two independent baseband transmissions
After modulation with cos(2πtfc) and sin(2πtfc) we get
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Carrier Transmission

Assume two independent baseband transmissions
After demodulation with cos(2πtfc) we get
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There is a red one here

Cut away these with low pass filter

The red spectras cancel out, thus, we can detect the blue independently from the red
Similar for demodulation with sin(2πtfc)

Fredrik Rusek: “PWC, Lecture 1” September 2015



Carrier Transmission

The block diagram of the transmitter is

y(t)

yQ(t)

yI(t)

cos(2 tfc)

-sin(2 tfc)

y(t) = yI(t) cos(2πfct)− yQ(t) sin(2πfct)
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Carrier Transmission

The block diagram of the receiver is

cos(2 tfc)

-sin(2 tfc)

r(t)

LPF

LPF

yI(t)+nI(t)

yQ(t)+nQ(t)

The in-phase and the quadrature components can be independently detected!
The LPF (low pass filters) can be taken as a matched filter to h(t)
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Carrier Transmission

The signals at both rails are baseband signals, and conventional processing follows:
matched filter → sampling every Ts second → decision unit

MF

Sample: kTs

yI(t)+nI(t)

MF

Sample: kTs

yQ(t)+nQ(t)

rI[k]=aI[k]+nI[k]

rQ[k]=aQ[k]+nQ[k]
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Carrier Transmission

What is a complex-valued symbol 1 + i?

In QPSK, we transmit complex valued symbols. In one symbol interval, we have

y(t) = h(t)︸︷︷︸
yI(t)

cos(2πfct)− h(t)︸︷︷︸
yQ(t)

sin(2πfct)
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Carrier Transmission

Real part goes here and imaginary here

What is a complex-valued symbol 1 + i?
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Carrier Transmission

We can alternatively express the signal y(t) as

y(t) = yI(t) cos(2πfct)− yQ(t) sin(2πfct)

= e(t) cos(2πfct + θ(t))

where e(t) is the envelope and θ(t) is the phase

For QPSK, e(t) =
√
2h(t) and θ(t) ∈ {π/4, 3π/4, 5π/4, 7π/4}

We can further manipulate y(t) into

y(t) = Re{(yI(t) + iyQ(t))e
2πfct}

= Re{ỹ(t)ei2πfct}

where
ỹ(t) = yI(t) + iyQ(t)
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Carrier Transmission

Example

Assume that we have two bits to transmit, say +1 and -1.

We can either do this as

y(t) = h(t) cos(2πfct)− (−h(t)) sin(2πfct)

or as
y(t) =

√
2h(t) cos(2πfct + 7π/4)

or as
y(t) = Re{(1− i)h(t)e2πfct}
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Carrier Transmission

In the last representation, we can change the receiver processing into

MF

Sample: kTs

yI(t)+nI(t)

MF

Sample: kTs

yQ(t)+nQ(t)

rI[k]=aI[k]+nI[k]

rQ[k]=aQ[k]+nQ[k]

i

r[k]+n[k]
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•  We want to represent the outputs as functions of the 
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Models of input and channel   

Lecture 2, EITN15

FREDRIK RUSEK

See Figure 1 for for the setup.

We want to express rI(t) and rQ(t) in yI(t) and yQ(t) respectively.

The transmitted signal y(t) equals

y(t) = yI(t) cos(ωct) − yQ(t) sin(ωct).

Similarily, the channel impulse response can be expressed as

h(t) = hI(t) cos(ωct) − hQ(t) sin(ωct).

To evaluate r(t) = y(t) ∗ h(t), we consider the signals in the Fourier domain:

R(f) = Y (f)H(f)

=
1

4
[YI(f + fc) + YI(f − fc) + YQ(f + fc) − YQ(f − fc)]

× [HI(f + fc) + HI(f − fc) + HQ(f + fc) − HQ(f − fc)] (1)

Now observe that a product of the type YI/Q(f ± fc)HI/Q(f − ∓fc) = 0 since it is assumed that

the bandwidth of the baseband signals is small in comparison to the carrier frequency fc. Thus,

expanding (1) gives

R(f) =
1

4
[YI(f + fc)HI(f + fc) + YI(f + fc)HQ(f + fc) + YI(f − fc)HI(f − fc)

−YI(f − fc)HQ(f − fc) + YQ(f + fc)HI(f + fc) − YQ(f + fc)HQ(f + fc)

−YQ(f − fc)HI(f + fc) + YQ(f − fc)HQ(f − fc)] (2)

By identifying terms, we get that

r(t) = r̃I(t) cos(ωct) − r̃Q(t) sin(ωct),

with

r̃I(t) =
1

2
[yI(t) ∗ hI(t) − yQ(t) ∗ hQ(t)]

and

r̃Q(t) =
1

2
[yI(t) ∗ hQ(t) + yQ(t) ∗ hI(t)].

1
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Basic trig properties By using the trigonometric identities

cos(x) cos(y) = 1
2 [cos(x + y) + cos(x − y)]

sin(x) cos(y) = 1
2 [sin(x + y) + sin(x − y)]

sin(x) sin(y) = 1
2 [cos(x + y) − cos(x − y)]

we get that

rI(t) =
1
2

[r̃I(t) cos(φ) + r̃Q(t) sin(φ)]

=
1
4

[(yI(t) ∗ hI(t) − yQ(t) ∗ hQ(t)) cos(φ) + (yI(t) ∗ hQ(t) + yQ(t) ∗ hI(t))) sin(φ)] (3)

and

rQ(t) =
1
4

[−(yI(t) ∗ hI(t) − yQ(t) ∗ hQ(t)) sin(φ) + (yI(t) ∗ hQ(t) + yQ(t) ∗ hI(t)) cos(φ)] (4)

Now construct the two complex valued signals

yc(t) ! yI(t) + yQ(t)

and

rc(t) ! rI(t) + rQ(t).

By identyifing some terms in (3) and (4), we can conclude that

rc(t) = yc(t) ∗ hc(t), (5)

with

hc(t) ! hI(t) cos(φ) + hQ(t) sin(φ) + (hQ(t) cos(φ) − hI(t) sin(φ)). (6)

What is QAM modulation...? The answer to that question can nicely be given in view of (5).

QAM is simply all signals of the form

Definition of QAM : yc(t) =
∑

!

a!p(t − #T ),where the symbols a! are complex valued.

The transmitted signal is then generated as

y(t) = R#{yc(t) exp(ωct)}. (7)

The received signal can be expressed as

yc(t) =
∑

!

a!v(t − #T ) + nc(t),

2

Signal at upper rail equals 
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Channel output in the Fourier domain 
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QAM is simply all signals of the form

Definition of QAM : yc(t) =
∑

!

a!p(t − #T ),where the symbols a! are complex valued.

The transmitted signal is then generated as

y(t) = R#{yc(t) exp(ωct)}. (7)

The received signal can be expressed as

yc(t) =
∑

!

a!v(t − #T ) + nc(t),

2
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Final result 

This can be modeled in the complex baseband by………this 

Channel 

By using the trigonometric identities

cos(x) cos(y) = 1
2
[cos(x + y) + cos(x − y)]

sin(x) cos(y) = 1
2
[sin(x + y) + sin(x − y)]

sin(x) sin(y) = 1
2
[cos(x + y) − cos(x − y)]

we get that

rI(t) =
1

2
[r̃I(t) cos(φ) + r̃Q(t) sin(φ)]

=
1

4
[(yI(t) ∗ hI(t) − yQ(t) ∗ hQ(t)) cos(φ) + (yI(t) ∗ hQ(t) + yQ(t) ∗ hI(t))) sin(φ)] (3)

and

rQ(t) =
1

4
[−(yI(t) ∗ hI(t) − yQ(t) ∗ hQ(t)) sin(φ) + (yI(t) ∗ hQ(t) + yQ(t) ∗ hI(t)) cos(φ)] (4)

Now construct the two complex valued signals

yc(t) ! yI(t) + yQ(t)

and

rc(t) ! rI(t) + rQ(t).

By identyifing some terms in (3) and (4), we can conclude that

rc(t) = yc(t) ∗ hc(t), (5)

with

hc(t) ! hI(t) cos(φ) + hQ(t) sin(φ) + (hQ(t) cos(φ) − hI(t) sin(φ)). (6)

What is QAM modulation...? The answer to that question can nicely be given in view of (5).

QAM is simply all signals of the form

Definition of QAM : yc(t) =
∑

!

a!p(t − #T ),where the symbols a! are complex valued.

The transmitted signal is then generated as

y(t) = R#{yc(t) exp(ωct)}. (7)

The received signal can be expressed as

yc(t) =
∑

!

a!v(t − #T ) + nc(t),

2
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No channel case 

Leakage between the In-
phase and the qudrature 
components! 
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No channel case 

Leakage between the In-
phase and the qudrature 
components! 

In complex baseband, this 
shows up as a rotation! 
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Effect of ϕ 

What is the effect of ϕ ? 

By using the trigonometric identities

cos(x) cos(y) = 1
2
[cos(x + y) + cos(x − y)]

sin(x) cos(y) = 1
2
[sin(x + y) + sin(x − y)]

sin(x) sin(y) = 1
2
[cos(x + y) − cos(x − y)]

we get that

rI(t) =
1

2
[r̃I(t) cos(φ) + r̃Q(t) sin(φ)]

=
1

4
[(yI(t) ∗ hI(t) − yQ(t) ∗ hQ(t)) cos(φ) + (yI(t) ∗ hQ(t) + yQ(t) ∗ hI(t))) sin(φ)] (3)

and

rQ(t) =
1

4
[−(yI(t) ∗ hI(t) − yQ(t) ∗ hQ(t)) sin(φ) + (yI(t) ∗ hQ(t) + yQ(t) ∗ hI(t)) cos(φ)] (4)

Now construct the two complex valued signals

yc(t) ! yI(t) + yQ(t)

and

rc(t) ! rI(t) + rQ(t).

By identyifing some terms in (3) and (4), we can conclude that

rc(t) = yc(t) ∗ hc(t), (5)

with

hc(t) ! hI(t) cos(φ) + hQ(t) sin(φ) + (hQ(t) cos(φ) − hI(t) sin(φ)). (6)

What is QAM modulation...? The answer to that question can nicely be given in view of (5).

QAM is simply all signals of the form

Definition of QAM : yc(t) =
∑

!

a!p(t − #T ),where the symbols a! are complex valued.

The transmitted signal is then generated as

y(t) = R#{yc(t) exp(ωct)}. (7)

The received signal can be expressed as

yc(t) =
∑

!

a!v(t − #T ) + nc(t),

2

Energy of the impulse response =  

Energy is independent of ϕ   !! 
 
 
Doesn’t matter if tx and rx are 
not synchronous 
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Summary 

We can always work in the complex baseband domain with the input/
output relation 
 
 
 
And we do not care about ϕ (it must be estimated though) 


